Local Homeostatic Control of Synapse Function
突触功能的局部稳态控制
基本信息
- 批准号:8212229
- 负责人:
- 金额:$ 37.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2015-01-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAction PotentialsAcuteAddressAgingAlzheimer&aposs DiseaseAutistic DisorderBasic ScienceBiochemical ProcessBrainBrain StemCellsDevelopmentEpilepsyEventExhibitsFamilyFinancial compensationGoalsHippocampus (Brain)IndividualInformation StorageLearningLifeLinkLong-Term DepressionLong-Term PotentiationMediatingMemoryMental RetardationModificationMolecularNeuraxisNeurodegenerative DisordersNeurologic DysfunctionsNeuronsOutcomePerfusionPlayPresynaptic TerminalsProcessProtein BiosynthesisPublished CommentRegulationRoleSignal TransductionSliceSynapsesSynaptic plasticityTestingTranslationsWorkbaseexperiencehippocampal pyramidal neuroninformation processinginhibitor/antagonistinterestknock-downlong term memorymemory encodingmemory processmulticatalytic endopeptidase complexnervous system disorderneural circuitneurotransmissionpostsynapticpresynapticprotein degradationpublic health relevancerepairedresponsesynaptic functionsynthetic protein
项目摘要
DESCRIPTION (provided by applicant): The remarkable information processing capacity of neurons in the mammalian brain stems from the dense network of synaptic connections they receive and the ability of these synapses to change with experience. However, the constellation of synaptic changes thought to underlie learning and memory ("Hebbian" plasticity) can also produce instability of activity within neural circuits, leading to a potential host of debilitating outcomes ranging from mental retardation to epilepsy. Work over the last decade has suggested that "homeostatic" forms of synaptic plasticity can promote long-term stability within neuronal networks by offsetting potentially destabilizing levels of synaptic activity through compensatory increases or decreases in synaptic strength. While this idea has generated wide interest in the field, we still lack a clear picture of how these compensatory changes are implemented at synapses and how they work in concert with Hebbian synaptic modifications. Recent work has challenged the picture provided by initial accounts that homeostatic compensation at central synapses as an intrinsically slow and cell-wide form of plasticity. We now propose the hypothesis that homeostatic synaptic plasticity is not defined by a unitary global process, but rather describes a family of compensatory mechanisms, a subset of which interact locally at synapses with processes important for information storage. This hypothesis will be tested in three specific aims, by examining: whether unique features of synaptic/neuronal activity drive distinct forms of synaptic compensation (Aim 1); whether compartmentalized biochemical processing in neurons mediates distinct aspects of homeostatic plasticity (Aim 2); and whether local mechanisms of homeostatic compensation interact with Hebbian synaptic plasticity at the same set of synaptic inputs (Aim 3). Since this project centers around a class of processes that are fundamental to basic neuron function, its implications are likely to broad, informing aspects of neuron signaling, development, and the devastating neurological disorders that have been linked with homeostatic plasticity, such as epilepsy. This project will also inform many basic science issues related to our understanding of learning and memory, such as the role of localized protein synthesis and degradation in synaptic plasticity and how such Hebbian synaptic modifications can endure in the face of compensatory mechanisms that would otherwise reverse them.
PUBLIC HEALTH RELEVANCE: Our ability to learn and remember is thought to involve specific changes in the network of synaptic connections in the brain; however, synaptic changes thought to underlie learning and memory can also produce instability of activity within neural circuits, leading to a host of debilitating outcomes ranging from mental retardation to epilepsy. Work over the last decade has suggested that a different class of synaptic modification - homeostatic synaptic plasticity - promotes compensatory changes in the strength of synapses to offset destabilizing levels of activity within neuronal networks and recent evidence has linked altered regulation of homeostatic plasticity with neurological dysfunction. However, the traditional viewpoint has been that these homeostatic mechanisms act on the neuron as a whole, rather than at the level of individual synapses, and therefore do not interact with mechanisms important for learning and memory storage. Recent evidence has challenged this view prompting us to propose and test the hypothesis that neurons are not limited to a single global compensation mechanism to promote network stability, but can rather draw from a family of mechanistically-distinct processes, some of which act locally at synapses and can interact with mechanisms important for information processing and storage.
描述(由申请人提供):哺乳动物大脑中神经元的显著信息处理能力源于它们接收的密集突触连接网络以及这些突触随经验变化的能力。然而,被认为是学习和记忆基础的突触变化集群(“Hebbian”可塑性)也可以在神经回路中产生活动不稳定,导致从智力迟钝到癫痫等一系列潜在的衰弱结果。过去十年的研究表明,“内稳态”形式的突触可塑性可以通过代偿性突触强度的增加或减少来抵消突触活动的潜在不稳定水平,从而促进神经网络的长期稳定。虽然这一想法在该领域引起了广泛的兴趣,但我们仍然缺乏关于这些代偿性变化如何在突触中实现以及它们如何与Hebbian突触修饰协同工作的清晰图景。最近的研究挑战了最初的说法,即中枢突触的稳态补偿本质上是一种缓慢的、全细胞范围的可塑性形式。我们现在提出这样一个假设,即稳态突触可塑性不是由一个单一的全局过程定义的,而是描述了一系列补偿机制,其中一个子集在突触局部与信息存储重要过程相互作用。这一假设将在三个具体目标中进行测试,通过检查:突触/神经元活动的独特特征是否驱动不同形式的突触补偿(目的1);神经元的区隔化生化处理是否介导了稳态可塑性的不同方面(目的2);以及在同一组突触输入下,局部稳态补偿机制是否与Hebbian突触可塑性相互作用(目的3)。由于该项目围绕着一类对基本神经元功能至关重要的过程展开,因此其影响可能很广泛,可以为神经元信号传导、发育以及与稳态可塑性相关的毁灭性神经系统疾病(如癫痫)提供信息。该项目还将告知许多与我们对学习和记忆的理解相关的基础科学问题,例如局部蛋白质合成和降解在突触可塑性中的作用,以及这种Hebbian突触修饰如何在面对补偿机制时能够持续下去,否则会逆转它们。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Mark Alexander Sutton其他文献
Michael Mark Alexander Sutton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Mark Alexander Sutton', 18)}}的其他基金
Regulation of parallel recycling pathways at synaptic sites
突触位点平行回收途径的调节
- 批准号:
10538722 - 财政年份:2022
- 资助金额:
$ 37.25万 - 项目类别:
Regulation of parallel recycling pathways at synaptic sites
突触位点平行回收途径的调节
- 批准号:
10665064 - 财政年份:2022
- 资助金额:
$ 37.25万 - 项目类别:
Trans-synaptic control of presynaptic neurotransmitter release
突触前神经递质释放的跨突触控制
- 批准号:
10326861 - 财政年份:2016
- 资助金额:
$ 37.25万 - 项目类别:
Trans-synaptic control of presynaptic neurotransmitter release
突触前神经递质释放的跨突触控制
- 批准号:
10560599 - 财政年份:2016
- 资助金额:
$ 37.25万 - 项目类别:
Trans-synaptic control of presynaptic neurotransmitter release
突触前神经递质释放的跨突触控制
- 批准号:
10157475 - 财政年份:2016
- 资助金额:
$ 37.25万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 37.25万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 37.25万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 37.25万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 37.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 37.25万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 37.25万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 37.25万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 37.25万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 37.25万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 37.25万 - 项目类别: