Integration of Flexible Micro Spring Array and High Throughput Microfluidics for

柔性微弹簧阵列和高通量微流体的集成

基本信息

  • 批准号:
    8358451
  • 负责人:
  • 金额:
    $ 223.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-17 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (Provided by the applicant) Abstract: The ability of metastatic cancer to release circulating tumor cells (CTCs) that travel through the blood and invade different parts of the body accounts for over 90% of cancer related deaths. New techniques for improved diagnosis and therapeutic strategies are desperately needed to improve patient outcomes in late stage metastatic cancer patients. One such technique involves the analysis of these CTCs through isolation from patient blood samples. Since molecular profiles of CTCs can be quite different from those of the primary tumor and more similar to the metastatic tumors, CTCs are better suited for metastatic cancer prognosis and diagnosis. Current CTC technologies have serious difficulties and limitations for clinic applications due to poor sensitivity and selectivity, high cost, and long processing times. CellSearchTM, the only current FDA approved system for CTC analysis, is only used for detection of CTCs and is not capable of preserving viable cells. The fundamental challenge with obtaining CTCs from blood samples is the fact that they are so rare, with only a few tumors cells occurring among billions of blood cells. Since tumor cells are almost always significantly larger than normal blood cells, size based separation has been demonstrated as an effective method for CTC capture. We have taken a novel approach to established microfiltration technology by implementing an array of flexible microsprings and using a regulated low pressure flow system to minimize the mechanical stresses experienced by cells during the filtration process. This is an efficient and cost effective system that is capable of the enrichment of viable CTCs from a clinically relevant blood volume of 7.5 mL in only 10 minutes. Despite achieving greater than 104 enrichment against leukocytes, the purity of the enriched cells is not sufficient for obtaining clinically relevant genetic information. We propose the incorporation of a high throughput microfluidic system that will physically partition these cells for analysis on a single cell level.By exploiting this inherent advantage of microtechnology, a large volume of parallel reactions can be used to overcome the issues with purity. Genetic expression profiles and mutation detections may be used for improved diagnosis, and lead to the development of highly personalized therapy plans that are optimized for each patient. Furthermore, the use of microfluidics for multiwell partitioning of CTCs will be used to attempt the establishment of favorable conditions for the culture of CTCs, even at an initially low seeding number. Successful primary culture of CTCs will allow drug efficacy tests that may be used to assay potential drugs ex vivo without exposing a patient to the unnecessary cost or toxic effects of chemotherapy. These new approaches based on the analysis of viable CTCs represent a different approach that has not been proven. However, since this technological platform is applicable to almost every type of cancer, it could fairly quickly revolutionize the way that therapies are derived for metastatic cancer patients. Public Health Relevance: The most deadly forms of cancer can release aggressive cells that circulate through the bloodstream and spread throughout the body. Microfabrication technology has been developed to effectively isolate these cells from a patient blood sample, allowing a minimally invasive "liquid biopsy" that may be performed often for monitoring tumor progression. This project explores the integration of a high throughput approach to analysis that will make it possible to test various anticancer drugs on these cells at no risk to the patient, and obtain genetic information that will be crucial to developing a highly personalized treatment plan.
描述(申请人提供) 摘要:转移性癌症释放循环肿瘤细胞(CTC)的能力,这些肿瘤细胞(CTC)在血液中传播并侵入体内的不同部位,占癌症相关死亡的90%以上。迫切需要改善诊断和治疗策略的新技术,以改善晚期转移性癌症患者的患者预后。一种这样的技术涉及通过从患者血液样本中分离出对这些CTC的分析。由于CTC的分子谱与原发性肿瘤的分子谱可能完全不同,并且与转移性肿瘤更相似,因此CTC更适合转移性癌症的预后和诊断。当前的CTC技术由于敏感性和选择性差,高成本和较长的处理时间而在诊所应用中遇到了严重的困难和局限性。 CelleChearchTM是CTC分析的唯一当前FDA批准的系统,仅用于检测CTC,并且无法保存可行的细胞。从血液样本中获得CTC的基本挑战是,它们是如此罕见,只有少数肿瘤细胞发生在数十亿个血细胞中。由于肿瘤细胞几乎总是比正常血细胞明显大,因此基于大小的分离已被证明是CTC捕获的有效方法。我们已经通过实施一系列柔性微弹力并使用调节的低压流系统来最大程度地减少细胞在过滤过程中经历的机械应力来最大程度地减少细胞的机械应力,从而采取了一种新颖的方法来建立微滤技术。这是一个有效且具有成本效益的系统,能够在仅10分钟内从临床相关的7.5 mL临床相关血容量中富集可行的CTC。尽管针对白细胞的富集达到了104次以上,但富集细胞的纯度不足以获得 临床相关的遗传信息。我们建议将高吞吐量的微流体系统掺入,该系统将对这些细胞级别进行物理分析以分析这些细胞。通过利用微技术的这种固有优势,可以使用大量的平行反应来克服纯度的问题。遗传表达谱和突变检测可用于改进诊断,并导致为每个患者进行优化的高度个性化治疗计划的制定。此外,即使以最初的播种数量低,使用微流体来用于CTC的多井分区,也将尝试为CTC培养物建立有利的条件。 CTC的成功原发性培养将允许药物疗效测试,这些测试可用于在体内分析潜在药物,而无需使患者暴露于不必要的成本或化学疗法的毒性作用。这些基于可行CTC分析的新方法代表了尚未证明的不同方法。但是,由于该技术平台几乎适用于几乎每种类型的癌症,因此它可能会相当快地彻底改变用于转移性癌症患者的疗法的方式。 公共卫生相关性:最致命的癌症形式可以释放通过血液循环并散布在整个体内的侵略性细胞。已经开发出微分化技术是为了有效地将这些细胞与患者的血液样本分离,从而可以经常进行最低侵入性的“液体活检”,以监测肿瘤进展。该项目探讨了高通量分析方法的整合,这将使在这些细胞上对各种抗癌药物进行对患者的风险进行测试,并获得对制定高度个性化的治疗计划至关重要的遗传信息。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Separable Bilayer Microfiltration Device for Label-Free Enrichment of Viable Circulating Tumor Cells.
可分离双层微滤装置,用于无标记富集活循环肿瘤细胞。
  • DOI:
    10.1007/978-1-4939-7144-2_6
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hao,Sijie;Nisic,Merisa;He,Hongzhang;Tai,Yu-Chong;Zheng,Si-Yang
  • 通讯作者:
    Zheng,Si-Yang
Highly sensitive DNA detection using cascade amplification strategy based on hybridization chain reaction and enzyme-induced metallization.
  • DOI:
    10.1016/j.bios.2014.11.035
  • 发表时间:
    2015-04-15
  • 期刊:
  • 影响因子:
    12.6
  • 作者:
    Yu, Xu;Zhang, Zhi-Ling;Zheng, Si-Yang
  • 通讯作者:
    Zheng, Si-Yang
Point-of-care microdevices for blood plasma analysis in viral infectious diseases.
  • DOI:
    10.1007/s10439-014-1044-2
  • 发表时间:
    2014-11
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Yeh YT;Nisic M;Yu X;Xia Y;Zheng SY
  • 通讯作者:
    Zheng SY
Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability.
  • DOI:
    10.1038/srep25459
  • 发表时间:
    2016-05-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Yu X;Cheng G;Zheng SY
  • 通讯作者:
    Zheng SY
Separable bilayer microfiltration device for viable label-free enrichment of circulating tumour cells.
  • DOI:
    10.1038/srep07392
  • 发表时间:
    2014-12-09
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Zhou MD;Hao S;Williams AJ;Harouaka RA;Schrand B;Rawal S;Ao Z;Brenneman R;Gilboa E;Lu B;Wang S;Zhu J;Datar R;Cote R;Tai YC;Zheng SY
  • 通讯作者:
    Zheng SY
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siyang Zheng其他文献

Siyang Zheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siyang Zheng', 18)}}的其他基金

3D carbon-nanotubes integrated microdevice for extracellular vesicle isolation and in situ sample preparation towards noninvasive pancreatic cancer diagnosis
用于细胞外囊泡分离和原位样品制备的 3D 碳纳米管集成微器件,用于非侵入性胰腺癌诊断
  • 批准号:
    10460188
  • 财政年份:
    2019
  • 资助金额:
    $ 223.5万
  • 项目类别:
3D carbon-nanotubes integrated microdevice for extracellular vesicle isolation and in situ sample preparation towards noninvasive pancreatic cancer diagnosis
用于细胞外囊泡分离和原位样品制备的 3D 碳纳米管集成微器件,用于非侵入性胰腺癌诊断
  • 批准号:
    10669041
  • 财政年份:
    2019
  • 资助金额:
    $ 223.5万
  • 项目类别:
3D carbon-nanotubes integrated microdevice for extracellular vesicle isolation and in situ sample preparation towards noninvasive pancreatic cancer diagnosis
用于细胞外囊泡分离和原位样品制备的 3D 碳纳米管集成微器件,用于非侵入性胰腺癌诊断
  • 批准号:
    9891982
  • 财政年份:
    2019
  • 资助金额:
    $ 223.5万
  • 项目类别:
3D carbon-nanotubes integrated microdevice for extracellular vesicle isolation and in situ sample preparation towards noninvasive pancreatic cancer diagnosis
用于细胞外囊泡分离和原位样品制备的 3D 碳纳米管集成微器件,用于非侵入性胰腺癌诊断
  • 批准号:
    10231020
  • 财政年份:
    2019
  • 资助金额:
    $ 223.5万
  • 项目类别:
Lipid nanoprobe integrated microdevice for extracellular vesicle isolation and duplex sequencing based mutation detection for non-invasive lung cancer diagnosis
用于细胞外囊泡分离和基于双重测序的突变检测的脂质纳米探针集成微器件用于非侵入性肺癌诊断
  • 批准号:
    10004593
  • 财政年份:
    2018
  • 资助金额:
    $ 223.5万
  • 项目类别:
Carbon nanotube integrated microdevice for next generation sequencing based virus discovery
用于基于下一代测序的病毒发现的碳纳米管集成微器件
  • 批准号:
    10226147
  • 财政年份:
    2018
  • 资助金额:
    $ 223.5万
  • 项目类别:
Lipid nanoprobe integrated microdevice for extracellular vesicle isolation and duplex sequencing based mutation detection for non-invasive lung cancer diagnosis
用于细胞外囊泡分离和基于双重测序的突变检测的脂质纳米探针集成微器件用于非侵入性肺癌诊断
  • 批准号:
    10478149
  • 财政年份:
    2018
  • 资助金额:
    $ 223.5万
  • 项目类别:
Lipid nanoprobe integrated microdevice for extracellular vesicle isolation and duplex sequencing based mutation detection for non-invasive lung cancer diagnosis
用于细胞外囊泡分离和基于双重测序的突变检测的脂质纳米探针集成微器件用于非侵入性肺癌诊断
  • 批准号:
    10686287
  • 财政年份:
    2018
  • 资助金额:
    $ 223.5万
  • 项目类别:
Lipid nanoprobe integrated microdevice for extracellular vesicle isolation and duplex sequencing based mutation detection for non-invasive lung cancer diagnosis
用于细胞外囊泡分离和基于双重测序的突变检测的脂质纳米探针集成微器件用于非侵入性肺癌诊断
  • 批准号:
    10248377
  • 财政年份:
    2018
  • 资助金额:
    $ 223.5万
  • 项目类别:
Development of a Flexible Micro Spring Array device for viable circulating tumor
开发用于活循环肿瘤的柔性微弹簧阵列装置
  • 批准号:
    8303786
  • 财政年份:
    2012
  • 资助金额:
    $ 223.5万
  • 项目类别:

相似国自然基金

基于脱氢弯孢霉素骨架的ACLY降解剂的设计、合成及抗肿瘤活性研究
  • 批准号:
    82304312
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于阳离子-π相互作用的“开/关”型纳米光敏剂的光敏活性调控及其抗肿瘤研究
  • 批准号:
    82304434
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
负载自组装型非核苷类STING激动剂的亚精胺水凝胶用于抗肿瘤免疫治疗及机制研究
  • 批准号:
    82303561
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于PROTAC的选择性AKT1降解剂的设计、合成及抗肿瘤活性研究
  • 批准号:
    82304287
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于PWWP域的NSD2蛋白降解剂的设计、合成与抗肿瘤活性研究
  • 批准号:
    22307132
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Metabolism of cancer chemotherapeutics by the human gut microbiome
人类肠道微生物组对癌症化疗药物的代谢
  • 批准号:
    10635361
  • 财政年份:
    2023
  • 资助金额:
    $ 223.5万
  • 项目类别:
"Transcranial FUS therapy with closed-loop US image guidance and circulating tumor DNA
“采用闭环超声图像引导和循环肿瘤 DNA 的经颅 FUS 治疗
  • 批准号:
    10219992
  • 财政年份:
    2020
  • 资助金额:
    $ 223.5万
  • 项目类别:
PEA15 IN DEVELOPMENT OF LIVER CANCER AND ITS THERAPEUTIC IMPLICATION
PEA15 在肝癌发展中的作用及其治疗意义
  • 批准号:
    10329953
  • 财政年份:
    2020
  • 资助金额:
    $ 223.5万
  • 项目类别:
"Transcranial FUS therapy with closed-loop US image guidance and circulating tumor DNA
“采用闭环超声图像引导和循环肿瘤 DNA 的经颅 FUS 治疗
  • 批准号:
    10400223
  • 财政年份:
    2020
  • 资助金额:
    $ 223.5万
  • 项目类别:
PEA15 IN DEVELOPMENT OF LIVER CANCER AND ITS THERAPEUTIC IMPLICATION
PEA15 在肝癌发展中的作用及其治疗意义
  • 批准号:
    10554410
  • 财政年份:
    2020
  • 资助金额:
    $ 223.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了