Statistical Methods for Finding Missing Heritability

寻找缺失遗传力的统计方法

基本信息

  • 批准号:
    8212023
  • 负责人:
  • 金额:
    $ 36.15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-01-10 至 2014-12-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Genome-wide association studies (GWAS) have become the primary approach for dissecting the genetic basis of complex diseases and are a powerful approach for detecting common alleles that influence disease risk. To date, hundreds of putative disease gene loci have been identified in GWAS. Despite this progress, these newly discovered loci typically account for only a small fraction of disease heritability. This raises new questions about where and how we can find the remaining genetic variation contributing to the susceptibility of complex and common diseases. Potential sources of missing heritability are (1) the contribution of rare variants, (2) gene-gene and gene-environment interaction, (3) combination of multiple SNPs, each with small genetic effect, but collectively conferring large risk, (4) structural variation. Current statistical methods for genetic analysis are well suited for detecting common variants, but new models and methods of analysis are needed for revealing the sources of missing disease heritability. To this end, the goals of this proposal are to develop novel and powerful statistical methods for studying rare variants and gene-gene interactions in the context of next-generation sequencing and GWAS data. Specifically, the methods we will develop will provide a unified analytical framework for testing associations with both common and rare alleles as well as their interaction with genetic and environmental factors. We will also develop graphical models and other statistical methods for co-association and interaction network analysis. The power of these methods will be rigorously analyzed by theoretical and simulation approaches, and will be applied to existing GWAS data sets (psoriasis and rheumatoid arthritis) and next generation sequencing data of extreme cardiovascular phenotypes funded by NIH grant 1RC2 HL02419-01. PUBLIC HEALTH RELEVANCE: This project aims to develop novel and powerful statistical methods for genetic association and interaction analysis of next-generation sequencing data and finding missing heritability unexplained by the current GWAS. Application of these methods to the sequence data will facilitate to identify entire spectrum of genetic variations that influence diseases and provide potential valuable tools for the development of diagnostic and interventional strategies.
描述(由申请人提供):全基因组关联研究(GWAS)已成为剖析复杂疾病遗传基础的主要方法,并且是检测影响疾病风险的常见等位基因的有力方法。迄今为止,已经在GWAS中鉴定了数百个推定的疾病基因位点。尽管取得了这些进展,但这些新发现的基因座通常只占疾病遗传性的一小部分。这就提出了新的问题,即我们在哪里以及如何找到导致复杂和常见疾病易感性的剩余遗传变异。缺失遗传力的潜在来源是(1)罕见变异的贡献,(2)基因-基因和基因-环境相互作用,(3)多个SNP的组合,每个SNP具有较小的遗传效应,但共同赋予较大的风险,(4)结构变异。目前遗传分析的统计方法非常适合检测常见变异,但需要新的模型和分析方法来揭示缺失疾病遗传力的来源。为此,该提案的目标是开发新的和强大的统计方法,用于在下一代测序和GWAS数据的背景下研究罕见变异和基因-基因相互作用。具体来说,我们将开发的方法将提供一个统一的分析框架,用于测试与常见和罕见等位基因的关联,以及它们与遗传和环境因素的相互作用。我们还将开发图形模型和其他统计方法,用于联合和交互网络分析。这些方法的能力将通过理论和模拟方法进行严格分析,并将应用于现有的GWAS数据集(银屑病和类风湿性关节炎)和由NIH资助1 RC 2 HL 02419 -01资助的极端心血管表型的下一代测序数据。 公共卫生相关性:该项目旨在开发新的和强大的统计方法,用于下一代测序数据的遗传关联和相互作用分析,并发现当前GWAS无法解释的缺失遗传力。将这些方法应用于序列数据将有助于识别影响疾病的整个遗传变异谱,并为诊断和干预策略的发展提供潜在的有价值的工具。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MOMIAO XIONG其他文献

MOMIAO XIONG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MOMIAO XIONG', 18)}}的其他基金

Unified Statistical Methods for Sequence-Based Association Studies
基于序列的关联研究的统一统计方法
  • 批准号:
    8642198
  • 财政年份:
    2013
  • 资助金额:
    $ 36.15万
  • 项目类别:
Unified Statistical Methods for Sequence-Based Association Studies
基于序列的关联研究的统一统计方法
  • 批准号:
    8430847
  • 财政年份:
    2013
  • 资助金额:
    $ 36.15万
  • 项目类别:
Statistical Methods for Finding Missing Heritability
寻找缺失遗传力的统计方法
  • 批准号:
    8597452
  • 财政年份:
    2011
  • 资助金额:
    $ 36.15万
  • 项目类别:
Statistical Methods for Finding Missing Heritability
寻找缺失遗传力的统计方法
  • 批准号:
    8025917
  • 财政年份:
    2011
  • 资助金额:
    $ 36.15万
  • 项目类别:
Statistical Methods for Finding Missing Heritability
寻找缺失遗传力的统计方法
  • 批准号:
    8397672
  • 财政年份:
    2011
  • 资助金额:
    $ 36.15万
  • 项目类别:
Network Approach to GWA Studies of Rheumatoid Arthritis (RA), Ankylosing Spondyli
类风湿关节炎 (RA)、强直性脊柱 GWA 研究的网络方法
  • 批准号:
    7643737
  • 财政年份:
    2009
  • 资助金额:
    $ 36.15万
  • 项目类别:
Network Approach to GWA Studies of Rheumatoid Arthritis (RA), Ankylosing Spondyli
类风湿关节炎 (RA)、强直性脊柱 GWA 研究的网络方法
  • 批准号:
    7927154
  • 财政年份:
    2009
  • 资助金额:
    $ 36.15万
  • 项目类别:
Analysis of Genetic-Enviornmental Networks in Spondlyoarthritis
脊柱关节炎的遗传-环境网络分析
  • 批准号:
    7504079
  • 财政年份:
    2007
  • 资助金额:
    $ 36.15万
  • 项目类别:
Analysis of Genetic-Environment Networks in Spondyloarthritis
脊柱关节炎的遗传-环境网络分析
  • 批准号:
    7192373
  • 财政年份:
    2006
  • 资助金额:
    $ 36.15万
  • 项目类别:
Analysis of Genetic-Environment Networks in Spondyloarthritis
脊柱关节炎的遗传-环境网络分析
  • 批准号:
    7596633
  • 财政年份:
  • 资助金额:
    $ 36.15万
  • 项目类别:

相似海外基金

Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
  • 批准号:
    502556
  • 财政年份:
    2024
  • 资助金额:
    $ 36.15万
  • 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
  • 批准号:
    10659303
  • 财政年份:
    2023
  • 资助金额:
    $ 36.15万
  • 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
  • 批准号:
    10674405
  • 财政年份:
    2023
  • 资助金额:
    $ 36.15万
  • 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
  • 批准号:
    10758772
  • 财政年份:
    2023
  • 资助金额:
    $ 36.15万
  • 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
  • 批准号:
    10676499
  • 财政年份:
    2023
  • 资助金额:
    $ 36.15万
  • 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
  • 批准号:
    2748611
  • 财政年份:
    2022
  • 资助金额:
    $ 36.15万
  • 项目类别:
    Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
  • 批准号:
    22K05630
  • 财政年份:
    2022
  • 资助金额:
    $ 36.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
  • 批准号:
    10532032
  • 财政年份:
    2022
  • 资助金额:
    $ 36.15万
  • 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
  • 批准号:
    10525070
  • 财政年份:
    2022
  • 资助金额:
    $ 36.15万
  • 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
  • 批准号:
    10689017
  • 财政年份:
    2022
  • 资助金额:
    $ 36.15万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了