Statistical Informatics for Cancer Research

癌症研究统计信息学

基本信息

  • 批准号:
    8323844
  • 负责人:
  • 金额:
    $ 61.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-10 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): We propose a Program Project, Statistical Informatics in Cancer Research, to tackle a series of problems motivated by the analysis of high dimensional data arising in population-based studies of cancer. This Program Project comprises three research projects and two cores. Project 1 focuses on spatio-temporal modeling of disease count data collected for administrative areas. The specific aims are motivated by problems encountered in epidemiological studies designed to monitor and assess health disparities. Our proposed methods address issues associated with administrative boundaries changing over time, sparse disease counts, spatial confounding, and heavy computational burdens for large data sets. Methods will be applied to data on U.S. breast cancer incidence from three state cancer registries, Boston-area premature mortality, and NCI SEER data. Project 2 is also motivated by spatially-indexed data related to cancer incidence and mortality, but the emphasis is on population surveillance and spatial cluster detection. Three of the specific aims of Project 2 are motivated by the analysis of NCI SEER data and one from a case/control study designed to assess spatial clustering in childhood leukemia. This dataset also includes individual level data on several genetic biomarkers of susceptibility. One sub-aim of this project assesses gene-space interaction by studying whether disease clustering patterns differ according to genetic polymorphisms. Project 3 focuses on methods for the analysis of very high dimensional genomic and proteomic biomarkers. Extensions to spatially indexed genomic data are also considered in Project 3. All of the aims of the three projects are closely integrated with the motivating real world cancer studies in which the investigators are involved. The three projects link thematically through a focus on population-based, observational studies in cancer, as well as technically through the consideration of high-dimensional correlated data (arising from different sources) that require advanced statistical and computing methods. Several specific techniques (e.g. spatio-temporal modeling, penalized likelihoods, False Discovery Rates, hidden Markov models) are shared between two and in some cases all three projects. The two cores consist of an Administrative Core and a Statistical Computing Core. The Administrative Core will coordinate the overall scientific direction and programmatic activities of Program, which will include short courses, a visitor program, dissemination of research results, and an external advisory committee. A Statistical Computing Core will ensure the development and dissemination of open access, good quality, user friendly software designed to implement the statistical methods developed in the Research Projects, which is the final Specific Aim of each of the three projects. The Program Director and Co-Director, Professors Louise Ryan and Xihong Lin, respectively, are internationally known biostatisticians with strong track records of academic administration.
描述(由申请人提供):我们提出了一个计划项目,统计信息学在癌症研究中,以解决一系列问题的动机,在基于人群的癌症研究中产生的高维数据的分析。该计划项目包括三个研究项目和两个核心。项目1侧重于为行政区域收集的疾病计数数据的时空建模。这些具体目标是由旨在监测和评估健康差距的流行病学研究中遇到的问题所激发的。我们提出的方法解决了与行政边界随时间变化,稀疏的疾病计数,空间混淆和大型数据集的沉重计算负担相关的问题。方法将应用于美国三个州癌症登记处的乳腺癌发病率数据、波士顿地区过早死亡率数据和NCI SEER数据。项目2的动机也是与癌症发病率和死亡率有关的空间索引数据,但重点是人口监测和空间集群检测。项目2的三个具体目标是由NCI SEER数据的分析和一个病例/对照研究,旨在评估儿童白血病的空间聚集的动机。该数据集还包括几种易感性遗传生物标志物的个体水平数据。该项目的一个子目标是通过研究疾病聚集模式是否因遗传多态性而异来评估基因空间相互作用。项目3的重点是非常高维的基因组和蛋白质组生物标志物的分析方法。项目3还考虑了对空间索引基因组数据的扩展。这三个项目的所有目标都与研究人员参与的、激励人心的真实的世界癌症研究紧密结合。这三个项目通过关注基于人群的癌症观察性研究在主题上相互联系,以及通过考虑需要先进的统计和计算方法的高维相关数据(来自不同来源)在技术上相互联系。几个具体的技术(如时空建模,惩罚似然,错误发现率,隐马尔可夫模型)之间共享两个,在某些情况下,所有三个项目。这两个核心包括一个管理核心和一个统计计算核心。行政核心将协调总体科学方向和计划活动,其中包括短期课程,访问者计划,研究成果的传播和外部咨询委员会。统计计算核心将确保开发和传播开放获取、高质量、用户友好的软件,以实施研究项目中开发的统计方法,这是三个项目中每个项目的最终具体目标。项目主任和联合主任Louise Ryan教授和Xihong Lin教授分别是国际知名的生物统计学家,具有良好的学术管理记录。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XIHONG LIN其他文献

XIHONG LIN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('XIHONG LIN', 18)}}的其他基金

Statistical Methods for Integrative Analysis of Large-Scale Multi-Ethnic Whole Genome Sequencing Studies and Biobanks of Common Diseases
大规模多民族全基因组测序研究和常见疾病生物样本库综合分析的统计方法
  • 批准号:
    10622567
  • 财政年份:
    2022
  • 资助金额:
    $ 61.46万
  • 项目类别:
Powering whole genome sequence-based genetic discovery for common human diseases- Extended 2021-2022.
为常见人类疾病提供基于全基因组序列的基因发现 - 延期 2021-2022 年。
  • 批准号:
    10355760
  • 财政年份:
    2021
  • 资助金额:
    $ 61.46万
  • 项目类别:
Powering whole genome sequence-based genetic discovery for common human diseases
为常见人类疾病提供基于全基因组序列的基因发现
  • 批准号:
    10085285
  • 财政年份:
    2020
  • 资助金额:
    $ 61.46万
  • 项目类别:
Powering whole genome sequence-based genetic discovery for common human diseases
为常见人类疾病提供基于全基因组序列的基因发现
  • 批准号:
    10168752
  • 财政年份:
    2020
  • 资助金额:
    $ 61.46万
  • 项目类别:
Core B: Biostatistics Core
核心 B:生物统计学核心
  • 批准号:
    10374816
  • 财政年份:
    2017
  • 资助金额:
    $ 61.46万
  • 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
  • 批准号:
    9120850
  • 财政年份:
    2015
  • 资助金额:
    $ 61.46万
  • 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
  • 批准号:
    10676866
  • 财政年份:
    2015
  • 资助金额:
    $ 61.46万
  • 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
  • 批准号:
    9321418
  • 财政年份:
    2015
  • 资助金额:
    $ 61.46万
  • 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
  • 批准号:
    9980301
  • 财政年份:
    2015
  • 资助金额:
    $ 61.46万
  • 项目类别:
Statistical Methods for Analysis of Massive Genetic and Genomic Data in Cancer Research
癌症研究中大量遗传和基因组数据分析的统计方法
  • 批准号:
    9752258
  • 财政年份:
    2015
  • 资助金额:
    $ 61.46万
  • 项目类别:

相似海外基金

Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 61.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 61.46万
  • 项目类别:
    Standard Grant
A Longitudinal Study of the Relationship between Participation in a Comprehensive Exercise Program and Academic Achievement
参加综合锻炼计划与学业成绩之间关系的纵向研究
  • 批准号:
    24K14615
  • 财政年份:
    2024
  • 资助金额:
    $ 61.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Characterizing Best Practices of Instructors who Have Narrowed Performance Gaps in Undergraduate Student Achievement in Introductory STEM Courses
合作研究:缩小本科生 STEM 入门课程成绩差距的讲师的最佳实践
  • 批准号:
    2420369
  • 财政年份:
    2024
  • 资助金额:
    $ 61.46万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335800
  • 财政年份:
    2024
  • 资助金额:
    $ 61.46万
  • 项目类别:
    Standard Grant
WTG: Diffusion of Research on Supporting Mathematics Achievement for Youth with Disabilities through Twitter Translational Visual Abstracts
WTG:通过 Twitter 翻译视觉摘要传播支持残疾青少年数学成就的研究
  • 批准号:
    2244734
  • 财政年份:
    2023
  • 资助金额:
    $ 61.46万
  • 项目类别:
    Standard Grant
The Impact of Emotional Experiences of Pride on Long-Term Goal Achievement Behaviors in Elite Athletes
骄傲的情感体验对优秀运动员长期目标实现行为的影响
  • 批准号:
    23K16740
  • 财政年份:
    2023
  • 资助金额:
    $ 61.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Meta-Analysis of the Instructional-Relational Model of Student Engagement and Math Achievement: A Moderation and Mediation Approach
学生参与度和数学成绩的教学关系模型的元分析:一种调节和中介方法
  • 批准号:
    2300738
  • 财政年份:
    2023
  • 资助金额:
    $ 61.46万
  • 项目类别:
    Standard Grant
Improving maths achievement in children with speech, language, and communication needs through 'collaborative vocabulary teaching'
通过“协作词汇教学”提高有言语、语言和交流需求的儿童的数学成绩
  • 批准号:
    2890475
  • 财政年份:
    2023
  • 资助金额:
    $ 61.46万
  • 项目类别:
    Studentship
HSI Institutional Transformation Project: Retention and Achievement for Introductory STEM English Learners (RAISE)
HSI 机构转型项目:STEM 英语入门学习者的保留和成就 (RAISE)
  • 批准号:
    2225178
  • 财政年份:
    2023
  • 资助金额:
    $ 61.46万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了