Neurovascular Unit on a Chip: Chemical Communication, Drug and Toxin Responses
芯片上的神经血管单元:化学通讯、药物和毒素反应
基本信息
- 批准号:8415453
- 负责人:
- 金额:$ 105.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-24 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdverse drug effectAdverse effectsAffectAnimal ModelArtsAstrocytesBioinformaticsBiologicalBiological AssayBiologyBloodBlood - brain barrier anatomyBlood VesselsBlood capillariesBlood flowBrainBrain regionCell CommunicationCell Culture TechniquesCellsCerebrospinal FluidCharacteristicsChemicalsChronic DiseaseClinicalClinical TrialsCommunicationCommunitiesCoupledCytomegalovirusDevelopmentDevicesDiseaseDisease modelDrug toxicityElementsEndothelial CellsEnsureFeedbackGrowth FactorHormonesHumanHypoxiaImmuneImmune systemIn SituIn VitroInfectionInfectious AgentInflammationInjuryInterventionIschemiaLeukocytesLipidsLiquid substanceMass Spectrum AnalysisMetabolicMetabolismMicrofluidic MicrochipsMicrofluidicsModelingMolecularMorbidity - disease rateNeuraxisNeurogliaNeuronsNeurosciencesNeurotransmittersNutrientNutritionalObesityPathologyPatientsPericytesPharmaceutical PreparationsPhasePhase I Clinical TrialsPhysiologicalPhysiologyPopulationPreparationPreventionProcessPropertyResearchResearch PersonnelRestRiskRoleScreening procedureSeriesSignal TransductionStem cellsStressStrokeStructure of choroid plexusSynapsesSystemTechniquesTechnologyTestingTimeToxinValidationXenobioticsbody systembrain cellbrain metabolismcapillarycell preparationcell typeclinical applicationclinically relevantcytokinedesigndrug discoverydrug efficacyexperiencein vitro Modelinsightinstrumentinstrumentationion mobilitymass spectrometermind body interactionmortalityneuropharmacologic agentneurotoxicityneurotropicneurovascular unitnovelprogramsrelating to nervous systemresponsesensorsmall moleculesoftware systemssynergismtheoriestraffickingvenule
项目摘要
DESCRIPTION (provided by applicant): Physical or pharmacological disruption of chemical signals between the systemic blood flow and the brain im- pairs normal functioning and responsiveness of the brain. Long-range chemical signaling through dysregulation of cytokines, nutrients, growth factors, hormones, lipids, neurotransmitters, drugs and their metabolites is also important, but these chemical signals are difficult to quantify and cells are usually studied n isolation. The blood-brain barrier (BBB) dynamically controls exchange between the brain and body, but this cannot be studied directly in the intact human brain or adequately represented by animal models. Most existing in vitro BBB models do not include neurons and glia with other BBB elements and cannot adequately predict drug efficacy and toxicity. This research will develop an in vitro, three-dimensional, multi-compartment, organotypic model of a central nervous system (CNS) neurovascular unit (NVU) and cerebral spinal fluid (CSF) compartment, both coupled to a realistic blood-surrogate supply system that also incorporates circulating immune cells. Primary and stem-cell-derived human cells will interact with a variety of agents to produce critical chemical communications across the BBB and between brain regions, providing a compact device that faithfully reproduces the properties of the human BBB, the CNS, and the CSF. The proposed in vitro BBB/CNS/CSF model will have a small volume, requires a limited number of human cells, can recreate interactions between different brain regions, and will be coupled in real time to advanced electrochemical and mass spectrometry instruments. This transformative technological platform will replicate chemical communication, molecular trafficking, and inflammation in the brain, and will enable targeted and clinically relevant nutritional and pharmacologic interventions or prevention. This platform will be used to examine the role of the BBB in modulating chemical body-brain interactions, characterize glial and neural cell interactions in the brain, and assess the effect of a wide range of drugs, chemicals, infectious agents and xenobiotics on various brain regions. The model's clinical utility rests on its ability to 1) recreate unique regions by selecting specific combinations of neurons, endothelial cells, astrocytes, other neuroglia, pericytes and systemic leukocytes, 2) use cells and fluids derived from patients with known pathologies to assess drug treatments and physiological stress from chronic diseases such as obesity and acute injury such as stroke, 3) uncover potential adverse effects during drug discovery as well as those that are being used in clinical trials, such as toxic transformation of approved drugs by brain endothelial cells, 4) detet novel and unbiased correlations between large numbers of chemical signals which converge at the BBB, and 5) combine microfluidic devices, state-of-the-art cell culture and organotypic human brain-cell preparations, analytical instruments, bioinformatics, control theory, and neuroscience drug discovery. An integrated approach will provide technologies of widespread applicability and reveal new mechanistic and region-specific insights into how the brain receives, modifies, and is affected by drugs, neurotropic agents and disease.
PUBLIC HEALTH RELEVANCE: This research will develop an in vitro microphysiological system representative of a neurovascular unit of the brain that will provide technologies of widespread clinical applicability and reveal new insights into how the brain receives, modifies, and is affected by drugs, other neurotropic agents, and disease. This transformative technological platform, which combines state-of-the art microfluidics, cell culture, analytical instruments, bioinformatics, control theory, and neuroscience drug discovery, will replicate chemical communication, molecular trafficking, and inflammation in the brain. It will enable targeted and clinically relevant nutritional and pharmacologic interventions or prevention of such chronic diseases as obesity and acute injury such as stroke, as well as uncover potential adverse effects of drugs.
描述(由申请人提供):全身血流和大脑之间的化学信号的物理或药理破坏损害大脑的正常功能和反应性。通过细胞因子、营养素、生长因子、激素、脂质、神经递质、药物及其代谢物的失调的长距离化学信号传导也很重要,但这些化学信号难以量化,并且通常在分离的情况下研究细胞。血脑屏障(BBB)动态地控制大脑和身体之间的交换,但这不能在完整的人脑中直接研究或通过动物模型充分代表。大多数现有的体外BBB模型不包括具有其他BBB元件的神经元和神经胶质,并且不能充分预测药物功效和毒性。这项研究将开发一个体外,三维,多隔室,中枢神经系统(CNS)神经血管单位(NVU)和脑脊液(CSF)隔室的器官型模型,两者都耦合到一个现实的血液替代供应系统,也包括循环免疫细胞。原代和干细胞衍生的人类细胞将与各种试剂相互作用,以产生跨越BBB和脑区域之间的关键化学通信,从而提供忠实地再现人类BBB、CNS和CSF的性质的紧凑装置。所提出的体外BBB/CNS/CSF模型将具有小体积,需要有限数量的人类细胞,可以重建不同脑区域之间的相互作用,并且将真实的时间耦合到先进的电化学和质谱仪器。这种变革性的技术平台将复制大脑中的化学通讯、分子运输和炎症,并将实现有针对性的和临床相关的营养和药理干预或预防。该平台将用于检查BBB在调节化学体-脑相互作用中的作用,表征大脑中的神经胶质细胞和神经细胞相互作用,并评估各种药物,化学品,感染剂和外源性物质对各种大脑区域的影响。该模型的临床实用性依赖于其以下能力:1)通过选择神经元、内皮细胞、星形胶质细胞、其他神经胶质细胞、周细胞和全身性白细胞的特定组合来重建独特区域,2)使用源自具有已知病理的患者的细胞和流体来评估药物治疗和来自慢性疾病如肥胖和急性损伤如中风的生理应激,3)揭示药物发现过程中的潜在副作用以及临床试验中使用的那些副作用,例如脑内皮细胞对批准药物的毒性转化,4)检测在BBB处会聚的大量化学信号之间的新颖且无偏的相关性,以及5)联合收割机微流体装置,最先进的细胞培养和器官型人脑细胞制备、分析仪器、生物信息学、控制理论和神经科学药物发现。综合方法将提供广泛适用的技术,并揭示大脑如何接收,修改和受药物,神经营养剂和疾病影响的新机制和区域特异性见解。
公共卫生关系:这项研究将开发一种代表大脑神经血管单位的体外微生理系统,该系统将提供具有广泛临床适用性的技术,并揭示大脑如何接受,修改和受药物,其他神经营养剂和疾病影响的新见解。这个变革性的技术平台结合了最先进的微流体、细胞培养、分析仪器、生物信息学、控制理论和神经科学药物发现,将复制大脑中的化学通讯、分子运输和炎症。它将使有针对性的和临床相关的营养和药理干预或预防慢性疾病,如肥胖和急性损伤,如中风,以及发现药物的潜在副作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(4)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEVIN D NISWENDER其他文献
KEVIN D NISWENDER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEVIN D NISWENDER', 18)}}的其他基金
GLP-1R signaling in allergic inflammation
过敏性炎症中的 GLP-1R 信号传导
- 批准号:
10062857 - 财政年份:2016
- 资助金额:
$ 105.76万 - 项目类别:
Dietary carbohydrate effects on GERD in obese Veterans:nutritional or hormonal?
膳食碳水化合物对肥胖退伍军人胃食管反流病的影响:营养还是激素?
- 批准号:
9337248 - 财政年份:2015
- 资助金额:
$ 105.76万 - 项目类别:
Dietary carbohydrate effects on GERD in obese Veterans:nutritional or hormonal?
膳食碳水化合物对肥胖退伍军人胃食管反流病的影响:营养还是激素?
- 批准号:
9042844 - 财政年份:2015
- 资助金额:
$ 105.76万 - 项目类别:
Neurovascular Unit on a Chip: Chemical Communication, Drug and Toxin Responses
芯片上的神经血管单元:化学通讯、药物和毒素反应
- 批准号:
8667648 - 财政年份:2012
- 资助金额:
$ 105.76万 - 项目类别:
Brain insulin and leptin resistance in obesity
肥胖症中的脑胰岛素和瘦素抵抗
- 批准号:
7095060 - 财政年份:2004
- 资助金额:
$ 105.76万 - 项目类别:
Brain insulin and leptin resistance in obesity
肥胖症中的脑胰岛素和瘦素抵抗
- 批准号:
6859999 - 财政年份:2004
- 资助金额:
$ 105.76万 - 项目类别:
Brain insulin and leptin resistance in obesity
肥胖症中的脑胰岛素和瘦素抵抗
- 批准号:
7472498 - 财政年份:2004
- 资助金额:
$ 105.76万 - 项目类别:
Brain insulin and leptin resistance in obesity
肥胖症中的脑胰岛素和瘦素抵抗
- 批准号:
7256342 - 财政年份:2004
- 资助金额:
$ 105.76万 - 项目类别:
Brain insulin and leptin resistance in obesity
肥胖症中的脑胰岛素和瘦素抵抗
- 批准号:
6951103 - 财政年份:2004
- 资助金额:
$ 105.76万 - 项目类别:
Leptin and insulin action in the brain; role in obesity
瘦素和胰岛素在大脑中的作用;
- 批准号:
7238616 - 财政年份:2003
- 资助金额:
$ 105.76万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 105.76万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 105.76万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 105.76万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 105.76万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 105.76万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 105.76万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 105.76万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 105.76万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 105.76万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 105.76万 - 项目类别:
Research Grant