Statistical Methods for Incomplete Data with Measurement Errors
存在测量误差的不完整数据的统计方法
基本信息
- 批准号:8252746
- 负责人:
- 金额:$ 19.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAlgorithmsCase StudyClinicalClinical ResearchClinical TrialsCommunitiesComputer softwareDataData AnalysesDropoutEatingEnvironmentEvaluationEventHealth SurveysInformaticsInternetInvestigationJointsLearningLibrariesLiteratureLongitudinal StudiesMeasurementMethodsModelingNutritional StudyObservational StudyOutcomePhasePhysical activityPublicationsResearchResourcesRunningSolutionsStatistical Data InterpretationStatistical MethodsStatistical sensitivityStructureStudy SubjectSurrogate MarkersTimeValidationVariantanimationattenuationbasecostdesignexperiencegraphical user interfaceinnovationinterestmethod developmentprototyperesearch studyresponsesimulationstatisticstool
项目摘要
DESCRIPTION (provided by applicant): Missing data and measurement errors are common problems in statistical data analysis. We are interested in experimental and observational studies where there exist missing data and measurement errors problems. Examples include health surveys containing non-responders or missing items, surrogate marker data with measurement errors, etc. The applications could be longitudinal clinical trials, multilevel community studies and health surveys. The incomplete data could be the non-ignorable missing response used in a model or as predictors, i.e. missing response, missing covariate, and covariate measurement errors. The most complicated scenario is the combination of such difficulties, i.e. the missing response with covariate measurement errors. The results from this project include innovative statistical methods, case studies, tools, solutions, and publications. These resources will be incorporated in our Longit Informatics Center for sharing and illustration. The Longit Informatics Center is an online data analysis environment. Subscribers can access many statistical packages and dynamic graphics for data analysis. In this project, the ultimate results will be two statistical packages added to Longit: 1) MiMe: statistical methods for missing data and measurement errors, and 2) Laso: joint modeling methods for longitudinal and survival outcomes in the study of surrogate marker for clinical event time. These packages include innovative statistical methods, sensitivity analysis and graphical methods. There is no commercial software to deal with complicated case as Laso.
PUBLIC HEALTH RELEVANCE: This project aims to develop statistical methods and tools for analyzing incomplete data with missing data and measurement errors.
描述(申请人提供):缺失数据和测量错误是统计数据分析中常见的问题。我们感兴趣的实验和观察研究中存在缺失数据和测量误差的问题。例子包括健康调查包含无应答者或缺失项目,替代标记数据与测量误差等的应用程序可以是纵向临床试验,多层次的社区研究和健康调查。不完整数据可以是模型中使用的不可验证的缺失响应或作为预测因子,即缺失响应、缺失协变量和协变量测量误差。最复杂的情况是这些困难的组合,即缺失的响应与协变量测量误差。该项目的成果包括创新的统计方法、案例研究、工具、解决方案和出版物。这些资源将被纳入我们的Longit信息学中心,用于共享和说明。Longit信息中心是一个在线数据分析环境。订阅者可以访问许多统计软件包和动态图形进行数据分析。在本项目中,最终结果将是Longit中添加的两个统计软件包:1)MiMe:缺失数据和测量误差的统计方法,2)Laso:临床事件时间替代标志物研究中纵向和生存结局的联合建模方法。这些软件包包括创新的统计方法,敏感性分析和图形方法。目前还没有商业软件能够像Laso那样处理复杂的情况。
公共卫生关系:该项目旨在开发用于分析具有缺失数据和测量误差的不完整数据的统计方法和工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward C Chao其他文献
Collaboratively Designing an App for a More Personalized, Community-Endorsed Continuous Glucose Monitoring Onboarding Experience: An Early Study
协作设计一个应用程序,以获得更个性化、社区认可的连续血糖监测入门体验:一项早期研究
- DOI:
10.1177/19322968231213654 - 发表时间:
2023 - 期刊:
- 影响因子:5
- 作者:
Edward C Chao;Mingjin Zhang;Mary A Houle;Heidi Rataj - 通讯作者:
Heidi Rataj
Zooming In, Then Out: Why We Must Apply Human-Centered Design to Transform Diabetes Technology
放大,然后缩小:为什么我们必须应用以人为本的设计来转变糖尿病技术
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5
- 作者:
Edward C Chao - 通讯作者:
Edward C Chao
Edward C Chao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward C Chao', 18)}}的其他基金
Statistical Methods for Incomplete Data with Measurement Errors
存在测量误差的不完整数据的统计方法
- 批准号:
9060357 - 财政年份:2012
- 资助金额:
$ 19.86万 - 项目类别:
Analytic, Sensitivity and Graphical Methods for Investigating Dropout Data
调查辍学数据的分析法、灵敏度法和图形法
- 批准号:
7771937 - 财政年份:2009
- 资助金额:
$ 19.86万 - 项目类别:
Analytic, Sensitivity and Graphical Methods for Investigating Dropout Data
调查辍学数据的分析法、灵敏度法和图形法
- 批准号:
7539999 - 财政年份:2008
- 资助金额:
$ 19.86万 - 项目类别:
Analytic Methods for Heterogeneous Multilevel Data
异构多级数据的分析方法
- 批准号:
7149351 - 财政年份:2006
- 资助金额:
$ 19.86万 - 项目类别:
Smoothing Methods to Investigate Non-linear Effect in Correlated Data Studies
研究相关数据研究中非线性效应的平滑方法
- 批准号:
7106987 - 财政年份:2006
- 资助金额:
$ 19.86万 - 项目类别:
Analytic Methods for Heterogeneous Multilevel Data
异构多级数据的分析方法
- 批准号:
7409496 - 财政年份:2006
- 资助金额:
$ 19.86万 - 项目类别:
Analytic Methods for Heterogeneous Multilevel Data
异构多级数据的分析方法
- 批准号:
7433839 - 财政年份:2006
- 资助金额:
$ 19.86万 - 项目类别:
Smoothing Methods to Investigate Non-linear Effect in Correlated Data Studies
研究相关数据研究中非线性效应的平滑方法
- 批准号:
7357510 - 财政年份:2006
- 资助金额:
$ 19.86万 - 项目类别:
Smoothing Methods to Investigate Non-linear Effect in Correlated Data Studies
研究相关数据研究中非线性效应的平滑方法
- 批准号:
7332957 - 财政年份:2006
- 资助金额:
$ 19.86万 - 项目类别:
Software for Fitting Non-Gaussian Random Effects Models
用于拟合非高斯随机效应模型的软件
- 批准号:
6736080 - 财政年份:2004
- 资助金额:
$ 19.86万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 19.86万 - 项目类别:
Research Grant