Smoothing Methods to Investigate Non-linear Effect in Correlated Data Studies
研究相关数据研究中非线性效应的平滑方法
基本信息
- 批准号:7357510
- 负责人:
- 金额:$ 34.08万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-04-15 至 2010-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAlgorithmsAreaAwarenessCase StudyCommunitiesComputer softwareDataData AnalysesDependenceDevelopmentDocumentationEquationFamily StudyFemaleFertilityGeneticGoalsHandHealthHeterogeneityLibrariesLongitudinal StudiesMenstrual cycleMethodologyMethodsModelingNon-linear ModelsOutcomePatternPrincipal InvestigatorProgesteronePublic HealthRecordsResearchResearch PersonnelStatistical MethodsSurveysTimeTo specifyUrineVariantbasediscrete dataguidebooksinnovationinterestreproductive hormoneresponsesimulationtechnical report
项目摘要
Correlated data are very common in health studies. Such data could come from longitudinal studies,
community panel surveys, genetic family studies or spatial studies. Typically, linear mixed-effect models are
used for modeling continuous response, and generalized linear mixed models are applied to non-Gaussian
data. In addition to such likelihood approaches, quasi-likelihood methods based on generalized estimating
equations GEE are often used when the distributional assumption is not realistic and not easy to specify. We
propose to extend these methods to handle the situations when the covariate effect is non-linear or is not
easy to be modeled parametrically. This is similar to generalized additive models, where a smooth curve is
used to predict the impact of a covariate on a univariate outcome. The goal of this study is to develop
statistical software for correlated data in two areas. The first is the spline smoothing methods for generalized
additive mixed models, which combine the semiparametric methods in generalized additive models using
smoothing methods and mixed-effect modeling for correlated data. The second is the semiparametric GEE
methods, which extend the GEE methods for correlated data with kernel smoothing to model the non-linear
impact on health outcome. The research includes statistical methods, algorithm development and application
to real health problems. The study requires analytic development on innovative semiparametric statistical
methods and algorithm development on computational intensive methods. Currently, there is no software for
these areas. The aim is to overcome this deficiency and extend the benefits of using smoothing methods to
model non-linear covariate effect. The result is a software package, SmoothEffect, for handling correlated
data. A comprehensive case study guidebook using problems from longitudinal studies and others will come
with the software. Technical reports and simulation studies will also be developed.
This study is to develop flexible statistical smoothing methods and softwarefor analyzing correlated data or
clustered data such as longitudinal data, panel surveys or spatial data. The focus of interest is to analyze
such clustered data where records from the same experimental unit are related and the impact from some
predictor on health outcome shows a non-linear smoothing curvature, which is no easy to be parameterized.
相关数据在健康研究中非常常见。这些数据可能来自纵向研究,
社区小组调查、遗传家族研究或空间研究。通常,线性混合效应模型是
用于连续响应的建模,而广义线性混合模型适用于非高斯
数据除了这种似然方法,基于广义估计的拟似然方法
当分布假设不现实且不容易指定时,通常使用GEE方程。我们
建议扩展这些方法,以处理协变量效应为非线性或非线性时的情况
易于参数化建模。这类似于广义加性模型,其中平滑曲线是
用于预测协变量对单变量结果的影响。本研究的目的是开发
两个领域相关数据的统计软件。第一种是广义样条光顺方法
加法混合模型,它联合收割机了广义加法模型中的半参数方法,
相关数据的平滑方法和混合效应建模。第二种是半参数GEE
方法,扩展了核平滑相关数据的GEE方法,以模拟非线性
对健康结果的影响。研究内容包括统计方法、算法开发和应用
真实的健康问题。这项研究需要创新的半参数统计分析的发展
计算密集型方法的方法和算法开发。目前,还没有软件
这些地区其目的是克服这一缺陷,并扩大使用平滑方法的好处,
模型非线性协变量效应。结果是一个软件包,平滑效果,用于处理相关的
数据一个全面的案例研究指南使用的问题,从纵向研究和其他人将来
用软件。还将编写技术报告和模拟研究报告。
本研究旨在开发灵活的统计平滑方法和软件,用于分析相关数据或
集群数据,例如纵向数据、面板调查或空间数据。兴趣的焦点是分析
来自相同实验单元的记录相关的这种聚类数据,
健康结果的预测值呈现非线性平滑曲率,不易参数化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Edward C Chao其他文献
Collaboratively Designing an App for a More Personalized, Community-Endorsed Continuous Glucose Monitoring Onboarding Experience: An Early Study
协作设计一个应用程序,以获得更个性化、社区认可的连续血糖监测入门体验:一项早期研究
- DOI:
10.1177/19322968231213654 - 发表时间:
2023 - 期刊:
- 影响因子:5
- 作者:
Edward C Chao;Mingjin Zhang;Mary A Houle;Heidi Rataj - 通讯作者:
Heidi Rataj
Zooming In, Then Out: Why We Must Apply Human-Centered Design to Transform Diabetes Technology
放大,然后缩小:为什么我们必须应用以人为本的设计来转变糖尿病技术
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:5
- 作者:
Edward C Chao - 通讯作者:
Edward C Chao
Edward C Chao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Edward C Chao', 18)}}的其他基金
Statistical Methods for Incomplete Data with Measurement Errors
存在测量误差的不完整数据的统计方法
- 批准号:
8252746 - 财政年份:2012
- 资助金额:
$ 34.08万 - 项目类别:
Statistical Methods for Incomplete Data with Measurement Errors
存在测量误差的不完整数据的统计方法
- 批准号:
9060357 - 财政年份:2012
- 资助金额:
$ 34.08万 - 项目类别:
Analytic, Sensitivity and Graphical Methods for Investigating Dropout Data
调查辍学数据的分析法、灵敏度法和图形法
- 批准号:
7771937 - 财政年份:2009
- 资助金额:
$ 34.08万 - 项目类别:
Analytic, Sensitivity and Graphical Methods for Investigating Dropout Data
调查辍学数据的分析法、灵敏度法和图形法
- 批准号:
7539999 - 财政年份:2008
- 资助金额:
$ 34.08万 - 项目类别:
Analytic Methods for Heterogeneous Multilevel Data
异构多级数据的分析方法
- 批准号:
7149351 - 财政年份:2006
- 资助金额:
$ 34.08万 - 项目类别:
Smoothing Methods to Investigate Non-linear Effect in Correlated Data Studies
研究相关数据研究中非线性效应的平滑方法
- 批准号:
7106987 - 财政年份:2006
- 资助金额:
$ 34.08万 - 项目类别:
Analytic Methods for Heterogeneous Multilevel Data
异构多级数据的分析方法
- 批准号:
7409496 - 财政年份:2006
- 资助金额:
$ 34.08万 - 项目类别:
Analytic Methods for Heterogeneous Multilevel Data
异构多级数据的分析方法
- 批准号:
7433839 - 财政年份:2006
- 资助金额:
$ 34.08万 - 项目类别:
Smoothing Methods to Investigate Non-linear Effect in Correlated Data Studies
研究相关数据研究中非线性效应的平滑方法
- 批准号:
7332957 - 财政年份:2006
- 资助金额:
$ 34.08万 - 项目类别:
Software for Fitting Non-Gaussian Random Effects Models
用于拟合非高斯随机效应模型的软件
- 批准号:
6736080 - 财政年份:2004
- 资助金额:
$ 34.08万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 34.08万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 34.08万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 34.08万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 34.08万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 34.08万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 34.08万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 34.08万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 34.08万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 34.08万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 34.08万 - 项目类别:
Standard Grant