Project 1: Molecular Dynamics Simulations of Channels and Voltage Sensors
项目1:通道和电压传感器的分子动力学模拟
基本信息
- 批准号:8374889
- 负责人:
- 金额:$ 24.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:ArginineArrhythmiaBiotinCationsCellsChargeCouplingCysteineDataDiseaseEnvironmentEpilepsyGated Ion ChannelGene MutationImmuneIon ChannelIon TransportIonsKnowledgeLeadLinkLipid BilayersLiquid substanceLiteratureLocationMeasurementMechanicsMembraneMembrane LipidsMembrane PotentialsModelingMolecularMotionMutateMyopathyNatureNeurodegenerative DisordersNeutronsPotassiumProcessProductionProteinsProtocols documentationProtonsReactive Oxygen SpeciesReagentResearchRoentgen RaysSignal TransductionStructural ModelsStructureToxinWorkbasechromophoredensityelectrical potentialmolecular dynamicsmonomermutantprogramsquantumresearch studyresponserestraintsensorsimulationvoltagevoltage gated channel
项目摘要
Electrical signals in excitable cells are generated by the flow of ions through protein channels in membranes.
In the case of voltage-gated ion channels, the flow of ions is controlled by the opening and closing of the ion
conducting pores in response to changes in the transmembrane electrical potential. Mutations of genes
encoding these channels are linked to neurodegenerative disease, epilepsy, cardiac arrhythmias, and
muscle disorders. Voltage-gated potassium (Kv) channels, the most extensively studied of the superfamily
of voltage-gated ion channels, are the subject of the proposed research. In spite of the availability of crystal
structures and a wide variety of spectroscopic and functional data, the mechanism of voltage gating is still
not well understood. The details that remain to be worked out include the establishment of the location of
the voltage sensor domain (VSD) in the closed state of the channel, the path that the VSD takes to traverse
the membrane during depolarization, and the nature of the electromechanical coupling through which the
motion of the VSD opens and closes the pore. Proton transport is used to maintain membrane polarization
during the production of reactive oxygen species in immune defense processes. The putative voltage-gated
proton conducting (Hv) channel is a protein that consists only of a VSD homologous to Kv channel VSDs.
The proton-conduction mechanism of the Hv proteins is presently completely unknown. This Program
Project will employ a combination of X-ray and neutron scattering measurements (Projects 2 and 3) in
concert with molecular dynamics simulations (Project 1) to elucidate the structure and motion of VSDs in
fluid lipid membranes. Project 1 will also seek to determine the mechanism of ion transport through Hv and
Kv VSDs. The specific aims are: (1) Use MD simulations to generate atomistic models of Kv channel VSDs
and whole Kv channels in open and closed states based on currently available structural and functional data;
use these models to help optimize the experiments to be performed in Projects 2 and 3, and to attempt to
reconcile data in the literature that lead to vastly different pictures of VSD location and motion. (2) Develop
restraint potentials that will force MD simulations to generate configurations that are consistent with
experimental scattering data. As the data from Projects 2 and 3 becomes available, we will use restrained
MD simulations to produce dynamic, three-dimensional structural models from one-dimensional data for
VSDs, channels, and the VSTxl toxin in multilamellar and single, tethered lipid bilayers. (3) Model proton
transfer (PT) in models for Hv proteins and the omega pores in Kv voltage sensor domains. We will build
model Hv channels based on Kv VSDs and use combined quantum mechanical/molecular mechanical
simulations to investigate PT through the VSDs. This will establish the protocols for additional simulations of
the transport of protons and other cations through the "omega pores" found in mutants of Kv channel VSDs.
可兴奋细胞中的电信号是由离子流过膜中蛋白质通道产生的。
在电压门控离子通道的情况下,离子的流动由离子的打开和关闭控制
响应跨膜电位的变化的传导孔。基因突变
编码这些通道与神经退行性疾病、癫痫、心律失常和
肌肉疾病。电压门控钾 (Kv) 通道,是超家族中研究最广泛的通道
电压门控离子通道的研究是拟议研究的主题。尽管有水晶
结构以及各种光谱和功能数据,电压门控的机制仍然是
不太理解。仍有待制定的细节包括确定地点
通道关闭状态下的电压传感器域 (VSD),VSD 遍历的路径
去极化过程中的膜,以及机电耦合的性质
VSD 的运动打开和关闭毛孔。质子传输用于维持膜极化
在免疫防御过程中产生活性氧的过程中。假定的电压门控
质子传导 (Hv) 通道是一种仅由与 Kv 通道 VSD 同源的 VSD 组成的蛋白质。
Hv 蛋白的质子传导机制目前完全未知。本计划
项目将结合使用 X 射线和中子散射测量(项目 2 和 3)
与分子动力学模拟(项目 1)相结合,阐明 VSD 的结构和运动
液体脂质膜。项目 1 还将寻求确定 Hv 和离子传输的机制
Kv VSD。具体目标是:(1)使用MD模拟生成Kv通道VSD的原子模型
基于当前可用的结构和功能数据,处于打开和关闭状态的整个 Kv 通道;
使用这些模型来帮助优化项目 2 和 3 中要执行的实验,并尝试
协调文献中的数据,这些数据导致 VSD 位置和运动的图像截然不同。 (2) 开发
约束势将迫使 MD 模拟生成与
实验散射数据。当项目 2 和 3 的数据可用时,我们将使用受限的
MD 模拟可从一维数据生成动态三维结构模型
多层和单一束缚脂质双层中的 VSD、通道和 VSTxl 毒素。 (3) 模型质子
Hv 蛋白模型中的转移 (PT) 和 Kv 电压传感器域中的 omega 孔。我们将建设
基于 Kv VSD 建模 Hv 通道并使用组合的量子力学/分子力学
通过 VSD 进行模拟研究 PT。这将建立额外模拟的协议
质子和其他阳离子通过 Kv 通道 VSD 突变体中发现的“欧米茄孔”的传输。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Douglas J Tobias其他文献
Douglas J Tobias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Douglas J Tobias', 18)}}的其他基金
Structure-Function Studies of Aquaporin 0 in Lens Development and Physiology
水通道蛋白 0 在晶状体发育和生理学中的结构功能研究
- 批准号:
10334493 - 财政年份:2021
- 资助金额:
$ 24.41万 - 项目类别:
Structure-Function Studies of Aquaporin 0 in Lens Development and Physiology
水通道蛋白 0 在晶状体发育和生理学中的结构功能研究
- 批准号:
10547773 - 财政年份:2021
- 资助金额:
$ 24.41万 - 项目类别:
Toward Molecular-Scale Models of Congenital and Age-Related Cataract: a Concerted Computational and Experimental Approach
先天性和年龄相关性白内障的分子尺度模型:协调一致的计算和实验方法
- 批准号:
9225213 - 财政年份:2016
- 资助金额:
$ 24.41万 - 项目类别:
MOLECULAR DYNAMICS SIMULATION OF SIGNAL TRANSDUCTION IN THE SQUID RHODOPSIN G-P
鱿鱼视紫红质 G-P 信号传导的分子动力学模拟
- 批准号:
8364350 - 财政年份:2011
- 资助金额:
$ 24.41万 - 项目类别:
COMPUTER SIMULATIONS OF CHOLESTEROL IN LIPID BILAYERS
脂质双层中胆固醇的计算机模拟
- 批准号:
3046015 - 财政年份:1992
- 资助金额:
$ 24.41万 - 项目类别:
COMPUTER SIMULATIONS OF CHOLESTEROL IN LIPID BILAYERS
脂质双层中胆固醇的计算机模拟
- 批准号:
2169075 - 财政年份:1992
- 资助金额:
$ 24.41万 - 项目类别:
COMPUTER SIMULATIONS OF CHOLESTEROL IN LIPID BILAYERS
脂质双层中胆固醇的计算机模拟
- 批准号:
3046014 - 财政年份:1991
- 资助金额:
$ 24.41万 - 项目类别:
Project 1: Molecular Dynamics Simulations of Channels and Voltage Sensors
项目1:通道和电压传感器的分子动力学模拟
- 批准号:
8025956 - 财政年份:
- 资助金额:
$ 24.41万 - 项目类别:
Project 1: Molecular Dynamics Simulations of Channels and Voltage Sensors
项目1:通道和电压传感器的分子动力学模拟
- 批准号:
7625289 - 财政年份:
- 资助金额:
$ 24.41万 - 项目类别:
Project 1: Molecular Dynamics Simulations of Channels and Voltage Sensors
项目1:通道和电压传感器的分子动力学模拟
- 批准号:
8213800 - 财政年份:
- 资助金额:
$ 24.41万 - 项目类别:
相似海外基金
DEVELOPING A HUMAN STEM CELL-DERIVED HEART MODEL TO CHARACTERIZE A NOVEL ARRHYTHMIA SYNDROME
开发人类干细胞衍生的心脏模型来表征新型心律失常综合征
- 批准号:
495592 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别:
Preliminary Study to Establish Heavy Ion Ablation Therapy for Lethal Ventricular Arrhythmia
重离子消融治疗致死性室性心律失常的初步研究
- 批准号:
23K14885 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Arrhythmia Mechanisms Modulated by Intercalated Disc Extracellular Nanodomains
闰盘细胞外纳米结构域调节心律失常的机制
- 批准号:
10668025 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别:
The role of inflammation in the pathogenesis of atrial fibrillation: Implications for atrial remodeling pathophysiology and for early atrial arrhythmia recurrences following radiofrequency ablation and pulsed field ablation
炎症在心房颤动发病机制中的作用:对心房重塑病理生理学以及射频消融和脉冲场消融后早期房性心律失常复发的影响
- 批准号:
514892030 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别:
WBP Fellowship
Development of a next-generation telemonitoring system for prognostic prediction of the onset of heart failure and arrhythmia
开发下一代远程监测系统,用于心力衰竭和心律失常发作的预后预测
- 批准号:
23K09597 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improved arrhythmia ablation via MR-guided robotic catheterization and multimodal clinician feedback
通过 MR 引导的机器人导管插入术和多模式临床医生反馈改善心律失常消融
- 批准号:
10638497 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别:
Prototype development and validation of soft robotic sensor arrays for mapping cardiac arrhythmia
用于绘制心律失常的软机器人传感器阵列的原型开发和验证
- 批准号:
10722857 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别:
The role N-terminal acetylation in dilated cardiomyopathy and associated arrhythmia
N-末端乙酰化在扩张型心肌病和相关心律失常中的作用
- 批准号:
10733915 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别:
A novel regulator of Ca2+ homeostasis and arrhythmia susceptibility
Ca2 稳态和心律失常易感性的新型调节剂
- 批准号:
10724935 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别:
Novel Stellate Ganglia Chemo-ablation Approach to Treat Cardiac Arrhythmia and Cardiac Remodeling in Heart Failure
新型星状神经节化疗消融方法治疗心律失常和心力衰竭心脏重塑
- 批准号:
10727929 - 财政年份:2023
- 资助金额:
$ 24.41万 - 项目类别: