Demand Driven Healthcare Scheduling using Flexible Shifts and Monte-Carlo Simulat
使用灵活轮班和蒙特卡罗模拟的需求驱动的医疗保健调度
基本信息
- 批准号:8207182
- 负责人:
- 金额:$ 19.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-12-23 至 2011-02-28
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsAmericanBusinessesClinicalComputer softwareCost SavingsCoupledDiscipline of NursingGoalsGrantHealthHealth Care CostsHealth PersonnelHealthcareHospital Chief Executive OfficersHospitalsHourHuman ResourcesInstitutionInvestmentsKnowledgeLife StyleLongevityManualsMarketingMeasuresMedicalMethodsMissionMoraleNursesOhioPhasePhysiciansPopulationPositioning AttributeProcessProductivityResearchRetirementSavingsScheduleScheduling and StaffingServicesSurveysTechnologyTimeWorkcollegecommercial applicationcommercializationcostdesignflexibilityimprovedinnovationmeetingsphase 1 studysimulation
项目摘要
DESCRIPTION (provided by applicant): The shortage of nurses and medical technologists is accelerating. Shortages can be reduced by scheduling staff to precisely meet the hour-by-hour demand for medical service. Think of bank teller scheduling, where more staff are scheduled at peak demand. Current attempts to schedule to demand are relatively primitive: a small number of quantized fixed shifts, for example: 7am-3pm, 10am-6pm, 3pm-11pm, 7am-7pm, 7pm-7am, etc. is allowed. The pre-determined fixed shifts are rigid input parameters for the scheduling process and workers are assigned to the shifts. In this innovation, fixed shifts are replaced with flexible shift parameters; specifically, a range of start times and shift durations that are harmonious with worker lifestyles. These parameters become elastic inputs for the scheduling algorithm. The actual shift assigned to a worker on any particular day is computed with the objective to have just enough workers to meet the hour-by-hour demand. Phase I research successfully determined the efficacy of worker-friendly, flexible shift scheduling and found savings of 4 percent are possible. Four percent can cut the current worker shortfall significantly and corresponds to annual savings of $3.5 billion in healthcare costs. Despite many scientific studies of flexible shift scheduling, there is a dearth of practical commercial applications primarily due to the complexity of technologies employed in the research. In Phase II, a simple but powerful technology, Monte-Carlo simulation, will be employed. The hypothesis is that a Monte-Carlo simulation can be developed that uses worker-friendly, flexible shift parameters to precisely meet the hour-by-hour demand for medical service. The Specific Aim is to find an objective function that quantifies the goal of meeting hour-by-hour demand and a set of shift perturbations for the Monte-Carlo process to use during the simulation. The commercialized product will be a new module for DOCS Scheduler, Acme Express Inc.'s healthcare staff scheduling software that is already in the marketplace. The current DOCS Scheduler was designed for salaried (physicians) staff and uses fixed shifts. Using flexible shifts is an entirely different innovation and focuses on shift workers like nurses and medical technicians. A new module that saves 4 percent in healthcare staffing costs will be a market-changing, competitive advantage for Acme Express, Inc.
PUBLIC HEALTH RELEVANCE: An ageing population with increasing lifespan, coupled with healthcare worker retirements and high turnover, is exacerbating the shortage of healthcare workers. The USA nurse shortage of 200,000 workers in 2008 is estimated to be 1,000,000 by 2014, with similar estimates for medical technologists. Phase I found that healthcare worker shortage can be reduced by 4 percent and healthcare worker morale improved by using flexible shifts that are harmonious with worker lifestyles to schedule staff precisely according to demand for medical service. In Phase II, Acme Express, Inc. will employ a simple but powerful technology, Monte-Carlo Simulation, to automatically build the staff schedule, minimize periods of overstaffing, and significantly reduce healthcare labor costs.
描述(由申请人提供):护士和医疗技术人员的短缺正在加速。可以通过安排工作人员精确地满足每小时的医疗服务需求来减少短缺。想想银行出纳员的调度,在高峰需求时安排更多的员工。目前,按需调度的尝试相对原始:允许少量量化的固定班次,例如:7am-3 pm、10am-6pm、3 pm-11 pm、7am-7 pm、7 pm-7am等。预定的固定班次是调度过程的刚性输入参数,并且工人被分配到班次。在这项创新中,固定班次被灵活的班次参数所取代;具体来说,一系列与工人生活方式相协调的开始时间和班次持续时间。这些参数成为调度算法的弹性输入。在任何特定的一天分配给工人的实际班次是以刚好有足够的工人来满足逐小时的需求为目标计算的。第一阶段的研究成功地确定了工人友好,灵活的轮班安排的功效,并发现节省4%是可能的。4%可以大大减少目前的工人短缺,相当于每年节省35亿美元的医疗费用。尽管有许多关于灵活轮班制的科学研究,但缺乏实际的商业应用,主要是由于研究中采用的技术的复杂性。在第二阶段,将采用一种简单但功能强大的技术,即蒙特-卡罗模拟。假设可以开发一个蒙特-卡罗模拟,使用工人友好的,灵活的轮班参数,以精确地满足每小时的医疗服务需求。具体目标是找到一个目标函数,该函数量化满足逐小时需求的目标和一组用于蒙特-卡罗过程的偏移扰动,以在模拟过程中使用。该商业化产品将成为Acme Express Inc. DOCS平台的新模块。的医疗保健人员调度软件,已经在市场上。目前的DOCS是为受薪(医生)工作人员设计的,使用固定班次。使用弹性轮班是一种完全不同的创新,重点是护士和医疗技术人员等轮班工作者。一个新的模块,节省百分之四的医疗保健人员成本将是一个市场变化,竞争优势的Acme快递公司。
公共卫生相关性:人口老龄化、寿命延长,加上医护人员退休和高流动率,加剧了医护人员的短缺。2008年美国护士短缺20万人,到2014年估计将短缺100万人,医疗技术人员也有类似的估计。第一阶段发现,通过使用与工人生活方式和谐的灵活轮班,根据医疗服务需求精确安排工作人员,可以减少4%的医护人员短缺,提高医护人员的士气。在第二阶段,Acme Express,Inc.将采用一种简单但功能强大的技术--蒙特-卡罗模拟,来自动建立工作人员的时间表,最大限度地减少人员过剩的时间,并显著降低医疗保健的劳动力成本。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DON S SCIPIONE其他文献
DON S SCIPIONE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DON S SCIPIONE', 18)}}的其他基金
Demand Driven Healthcare Scheduling using Flexible Shifts and Monte-Carlo Simulat
使用灵活轮班和蒙特卡罗模拟的需求驱动的医疗保健调度
- 批准号:
8037588 - 财政年份:2010
- 资助金额:
$ 19.82万 - 项目类别:
Demand Driven Healthcare Scheduling using Flexible Shifts and Monte Carlo Simulat
使用灵活轮班和蒙特卡罗模拟的需求驱动的医疗保健调度
- 批准号:
7616957 - 财政年份:2008
- 资助金额:
$ 19.82万 - 项目类别:
Demand Driven Healthcare Scheduling using Flexible Shifts and Monte-Carlo Simulat
使用灵活轮班和蒙特卡罗模拟的需求驱动的医疗保健调度
- 批准号:
7905529 - 财政年份:2008
- 资助金额:
$ 19.82万 - 项目类别:
OPTIMIZING STAFF SCHEDULING BY MONTE CARLO SIMULATION
通过蒙特卡洛模拟优化人员调度
- 批准号:
2285194 - 财政年份:1995
- 资助金额:
$ 19.82万 - 项目类别:
OPTIMIZING STAFF SCHEDULING BY MONTE CARLO SIMULATION
通过蒙特卡洛模拟优化人员调度
- 批准号:
6021430 - 财政年份:1995
- 资助金额:
$ 19.82万 - 项目类别:
OPTIMIZING STAFF SCHEDULING BY MONTE CARLO SIMULATION
通过蒙特卡洛模拟优化人员调度
- 批准号:
2669127 - 财政年份:1995
- 资助金额:
$ 19.82万 - 项目类别:
OPTIMIZING STAFF SCHEDULING BY MONTE CARLO SIMULATION
通过蒙特卡洛模拟优化人员调度
- 批准号:
2040106 - 财政年份:1995
- 资助金额:
$ 19.82万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 19.82万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 19.82万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 19.82万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 19.82万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 19.82万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 19.82万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 19.82万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 19.82万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 19.82万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 19.82万 - 项目类别:
Continuing Grant