Demand Driven Healthcare Scheduling using Flexible Shifts and Monte Carlo Simulat
使用灵活轮班和蒙特卡罗模拟的需求驱动的医疗保健调度
基本信息
- 批准号:7616957
- 负责人:
- 金额:$ 9.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-29 至 2010-02-28
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsAmericanBedsBusinessesClinicalComputer softwareCoupledDiscipline of NursingEconomicsEnsureHealth PersonnelHealth ProfessionalHealthcareHospital Chief Executive OfficersHospitalsHourHuman ResourcesKnowledgeLengthLifeLife StyleLiteratureLongevityManualsMarketingMedicalMethodsMoraleNumbersNursesPhasePopulationPositioning AttributeProcessPublic HealthQuality of CareRangeRetirementSavingsScheduleScheduling and StaffingServicesSurveysTechnologyTestingThinkingTimeWorkcollegecommercializationcostdayimprovedinnovationsimulation
项目摘要
DESCRIPTION (provided by applicant): The shortage of healthcare workers is accelerating. An longer-living, ageing population is demanding more medical service while healthcare worker retirements and high turnover is decreasing the worker pool. Shortages can be reduced or eliminated by scheduling only the number of staff needed to meet the hour-by-hour demand for medical service and using flexible shifts to do so. Think of bank teller scheduling, where more staff are scheduled at peak demand. Current attempts to schedule to demand are relatively primitive: a small number of quantized fixed shifts, for example: 7am-3pm, 8am-4pm, 10am-6pm, 3pm-11pm, 7am- 7pm, 7pm-7am, etc. is allowed. The pre-determined fixed shifts are input parameters to the scheduling process and workers are assigned to the shifts. The scheduler's objective is to fill enough morning, afternoon and evening shifts to meet expected demand for medical service throughout the day. In our innovation, fixed shifts are replaced with flexible shift parameters; specifically, a range of start times and shift lengths which become inputs to the scheduling algorithm. The actual shift assigned to a worker on any particular day is computed with the objective to have just enough workers to meet hour-by-hour demand for medical service. Phase I will determine the efficacy of flexible shift scheduling to meet demand for medical service and estimate the possible efficiency. Phase II will develop an algorithm that automates the process using flexible shifts and Monte-Carlo simulation. The literature indicates 2-15% FTE efficiencies are possible by using flexible shifts, corresponding to an annual societal economic impact of $1.7 billion to $8 billion. The commercialized product will be a new module for DOCS Scheduler, our scheduling software that currently is being used by 120 healthcare organizations. Our current product schedules using fixed shifts. The addition of a flexible shift scheduler module providing FTE efficiencies of 2-15% would be a market-changing competitive advantage. PUBLIC HEALTH RELEVANCE: An ageing population with increasing lifespan, coupled with healthcare worker retirements and high turnover, is exacerbating the shortage of healthcare workers. The USA nurse shortage of 200,000 workers in 2008 is estimated to be 1,000,000 by 2014. Healthcare worker shortages can be significantly reduced, possibly eliminated, and healthcare worker morale improved, by using flexible shifts that are harmonious with worker lifestyles to schedule staff precisely according to demand for medical service.
描述(由申请人提供):卫生工作者的短缺正在加速。寿命延长和老龄化的人口要求更多的医疗服务,而保健工作者的退休和高流动率正在减少劳动力。可以通过只安排满足每小时医疗服务需求所需的工作人员数量并采用灵活的轮班来减少或消除短缺。想想银行柜员的调度,在需求高峰期会安排更多的员工。目前根据需求进行调度的尝试相对原始:允许少量量化的固定班次,例如:7点到3点,8点到4点,10点到6点,3点到11点,7点到7点,7点到7点等等。预先确定的固定班次是调度过程的输入参数,工人被分配到班次。调度员的目标是安排足够的上午、下午和晚上轮班,以满足全天对医疗服务的预期需求。在我们的创新中,固定换挡被灵活的换挡参数所取代;具体地说,是一个开始时间和移位长度的范围,它们成为调度算法的输入。在任何特定的一天分配给工人的实际班次是为了有足够的工人来满足每小时的医疗服务需求而计算的。第一阶段将确定弹性轮班制在满足医疗服务需求方面的效果,并估计可能的效率。第二阶段将开发一种算法,使用灵活的移位和蒙特卡罗模拟来实现过程自动化。文献表明,通过灵活的班次,可以实现2-15%的FTE效率,相当于每年17亿至80亿美元的社会经济影响。该商业化产品将是我们的调度软件DOCS Scheduler的一个新模块,该软件目前被120家医疗机构使用。我们目前的生产计划采用固定班次。增加一个灵活的轮班调度模块,提供2-15%的FTE效率,将是一个改变市场的竞争优势。公共卫生相关性:人口老龄化,寿命延长,加上卫生保健工作者退休和高流失率,加剧了卫生保健工作者的短缺。2008年美国护士短缺20万人,预计到2014年将达到100万人。通过采用与工人生活方式相协调的灵活轮班,根据医疗服务需求精确安排工作人员,可以大大减少甚至可能消除卫生保健工作者短缺,并提高卫生保健工作者的士气。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DON S SCIPIONE其他文献
DON S SCIPIONE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DON S SCIPIONE', 18)}}的其他基金
Demand Driven Healthcare Scheduling using Flexible Shifts and Monte-Carlo Simulat
使用灵活轮班和蒙特卡罗模拟的需求驱动的医疗保健调度
- 批准号:
8207182 - 财政年份:2010
- 资助金额:
$ 9.8万 - 项目类别:
Demand Driven Healthcare Scheduling using Flexible Shifts and Monte-Carlo Simulat
使用灵活轮班和蒙特卡罗模拟的需求驱动的医疗保健调度
- 批准号:
8037588 - 财政年份:2010
- 资助金额:
$ 9.8万 - 项目类别:
Demand Driven Healthcare Scheduling using Flexible Shifts and Monte-Carlo Simulat
使用灵活轮班和蒙特卡罗模拟的需求驱动的医疗保健调度
- 批准号:
7905529 - 财政年份:2008
- 资助金额:
$ 9.8万 - 项目类别:
OPTIMIZING STAFF SCHEDULING BY MONTE CARLO SIMULATION
通过蒙特卡洛模拟优化人员调度
- 批准号:
2285194 - 财政年份:1995
- 资助金额:
$ 9.8万 - 项目类别:
OPTIMIZING STAFF SCHEDULING BY MONTE CARLO SIMULATION
通过蒙特卡洛模拟优化人员调度
- 批准号:
6021430 - 财政年份:1995
- 资助金额:
$ 9.8万 - 项目类别:
OPTIMIZING STAFF SCHEDULING BY MONTE CARLO SIMULATION
通过蒙特卡洛模拟优化人员调度
- 批准号:
2669127 - 财政年份:1995
- 资助金额:
$ 9.8万 - 项目类别:
OPTIMIZING STAFF SCHEDULING BY MONTE CARLO SIMULATION
通过蒙特卡洛模拟优化人员调度
- 批准号:
2040106 - 财政年份:1995
- 资助金额:
$ 9.8万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 9.8万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 9.8万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 9.8万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 9.8万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 9.8万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 9.8万 - 项目类别:
Continuing Grant