Neural Mechanisms of sound intensity coding
声强编码的神经机制
基本信息
- 批准号:8230692
- 负责人:
- 金额:$ 34.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-01 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:Acoustic NerveAcousticsAddressAnimalsAreaAuditoryBirdsBrainBrain StemCharacteristicsCochlear ImplantsCochlear nucleusCodeCommunicationCuesDevelopmentDevicesElectric StimulationElementsEnvironmentExhibitsGoalsHearingHumanIn VitroInterventionInvestigationKnowledgeLeadLinkMaintenanceMeasuresMediatingMental DepressionN-Methyl-D-Aspartate ReceptorsNerveNerve FibersNeural PathwaysNeuraxisNeuronsNeurophysiology - biologic functionOutputPathway interactionsPatientsPatternPhysiologicalPreparationPresynaptic TerminalsProcessPropertyProsthesisResearchRoleSensory ProcessSignal TransductionSliceSound LocalizationSpeechStagingStimulusSynapsesSynaptic plasticitySystemTestingTimeTrainingTranslatingWorkauditory pathwaybasehearing impairmentimplantable deviceimprovedin vivoinsightneuromechanismneurophysiologynovelpostsynapticpresynapticpublic health relevancerelating to nervous systemresearch studyresponserestorationsoundtransmission process
项目摘要
DESCRIPTION (provided by applicant): A detailed understanding of the neurophysiological basis of hearing is fundamental to the understanding of human hearing impairment and the guidance of further development of the most successful prosthetic intervention to date, the cochlear implant. Yet we still lack a complete description of how sound information is processed at even the first central nervous system relay, the cochlear nucleus. Different aspects of sound are extracted from the auditory nerve spike trains and encoded via parallel neural pathways. While the coding of timing cues have been studied extensively, the processing of intensity cues remains unclear, especially relating to non-localization tasks such as sound recognition. We recently determined that the timing and intensity circuits in the cochlear nucleus are distinguished by the expression of different forms of short-term synaptic plasticity. In vitro studies have demonstrated that the intensity pathways exhibit a mixture of short-term facilitation and depression that allows the transmission of rate-encoded intensity information. In contrast, the short-term depression found in timing circuits creates a synaptic gain control that contributes to intensity-invariant coding of timing cues. We expand our investigation of intensity coding to spike trains in response to dynamic, amplitude modulated sounds, an important component of sound communication signals. The goal of this proposal is to identify the synaptic and cellular mechanisms that contribute to the encoding of sound intensity and establish their importance in the intact brain. Aim 1 uses the avian (chick) cochlear nucleus slice preparation to investigate two synaptic enhancement mechanisms: short-term synaptic facilitation and the contribution of NMDA-receptor currents to synaptic integration. We use dynamic clamp to determine the input-output function of cochlear nucleus neurons. Aim 2 investigates how dynamic stimuli like amplitude-modulated sounds are processed at auditory nerve synapses in the cochlear nucleus by measuring physiological synaptic responses to rate-modulated spike train inputs, using electrical stimulation and dynamic clamp. In Aim 3, we will extend our in vitro short-term plasticity results to the intact cochlear nucleus with in vivo, intracellular recordings in the avian brainstem. Given the recent advances in the restoration of hearing using prosthetic devices that stimulate the auditory nerve, it is critical to understand how nerve activity is interpreted by the central nervous system. This proposal will provide new information on the transformation of auditory information which will help improve assisted-hearing devices and lead to a better understanding of normal hearing.
PUBLIC HEALTH RELEVANCE: Improved cochlear implant devices are a major goal of hearing research. Our experiments will further this goal by defining how electrical stimulation of the auditory nerve translates into physiological activity in the brainstem target, the cochlear nucleus. Examination of how modulations of sound intensity are coded by the brain will also provide new insight into the difficulties that the hearing impaired and cochlear implant patients have in understanding speech in noisy environments.
描述(申请人提供):对听力的神经生理学基础的详细了解是理解人类听力损伤的基础,并指导迄今为止最成功的假体干预的进一步发展,即人工耳蜗术。然而,我们仍然缺乏一个完整的描述,即使是在第一个中枢神经系统继电器--耳蜗核--声音信息是如何处理的。声音的不同方面从听觉神经棘波序列中提取出来,并通过平行的神经通路进行编码。虽然时间线索的编码已经得到了广泛的研究,但强度线索的加工仍然不清楚,特别是与声音识别等非本地化任务有关的加工。我们最近确定,耳蜗核中的计时和强度回路是通过不同形式的短期突触可塑性的表达来区分的。体外研究表明,强度通路表现出短期促进和抑制的混合,允许传输速率编码的强度信息。相比之下,在计时电路中发现的短期抑制产生了突触增益控制,这有助于对计时线索进行强度不变的编码。我们将强度编码的研究扩展到响应动态调幅声音的尖峰序列,这是声音通信信号的重要组成部分。这项建议的目标是确定有助于声音强度编码的突触和细胞机制,并确定它们在完整大脑中的重要性。目的1采用鸡(禽)耳蜗核切片制备方法,探讨突触增强的两种机制:突触短时易化和NMDA受体电流对突触整合的贡献。我们使用动态钳位技术来确定耳蜗核神经元的输入输出功能。目的2通过电刺激和动态钳夹技术,测量耳蜗核听神经突触对频率调制棘波输入的生理反应,研究动态刺激如调幅声音是如何在耳蜗核的听神经突触中被处理的。在目标3中,我们将把我们的体外短期可塑性结果扩展到完整的耳蜗核,并在活体内对鸟类脑干进行细胞内记录。鉴于最近在使用刺激听神经的假体设备恢复听力方面的进展,了解中枢神经系统如何解释神经活动是至关重要的。这项建议将提供有关听觉信息转换的新信息,这将有助于改进辅助听力设备,并导致对正常听力的更好理解。
公共卫生相关性:改进的人工耳蜗植入设备是听力研究的一个主要目标。我们的实验将通过定义听觉神经的电刺激如何转化为脑干目标--耳蜗核的生理活动来进一步实现这一目标。对大脑如何编码声音强度调制的研究也将为听力受损和人工耳蜗植入患者在嘈杂环境中理解语音方面的困难提供新的见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATRINA M MACLEOD其他文献
KATRINA M MACLEOD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATRINA M MACLEOD', 18)}}的其他基金
Short-term synaptic plasticity and intensity coding in *
* 中的短期突触可塑性和强度编码
- 批准号:
7035540 - 财政年份:2005
- 资助金额:
$ 34.69万 - 项目类别:
Short-term synaptic plasticity and intensity coding in *
* 中的短期突触可塑性和强度编码
- 批准号:
7318882 - 财政年份:2005
- 资助金额:
$ 34.69万 - 项目类别:
Short-term synaptic plasticity and intensity coding in *
* 中的短期突触可塑性和强度编码
- 批准号:
7157599 - 财政年份:2005
- 资助金额:
$ 34.69万 - 项目类别:
AVIAN AUDITORY BRAINSTEM SYNAPSES AND INTENSITY CODING
鸟类听觉脑干突触和强度编码
- 批准号:
6531013 - 财政年份:2001
- 资助金额:
$ 34.69万 - 项目类别:
SHORT TERM SYNAPTIC PLASTICITY OF CORTICAL INTERNEURONS
皮质中间神经元的短期突触可塑性
- 批准号:
6330394 - 财政年份:2000
- 资助金额:
$ 34.69万 - 项目类别:
SHORT TERM SYNAPTIC PLASTICITY OF CORTICAL INTERNEURONS
皮质中间神经元的短期突触可塑性
- 批准号:
6447377 - 财政年份:2000
- 资助金额:
$ 34.69万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 34.69万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 34.69万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 34.69万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 34.69万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 34.69万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 34.69万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 34.69万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 34.69万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 34.69万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 34.69万 - 项目类别:
Standard Grant