Investigation on Oligosaccharides as Antimicrobial and Prebiotics
低聚糖作为抗菌剂和益生元的研究
基本信息
- 批准号:8322023
- 负责人:
- 金额:$ 30.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2014-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAnti-Infective AgentsAntigensBacteriaBacterial AdhesionBacterial InfectionsBiologicalBreast FeedingCarbohydratesCell-Free SystemCellsCharacteristicsChildCloningCollaborationsDevelopmentDietary FiberDoseEnteralEnzyme GeneEnzymesEpithelialEscherichia coliExhibitsExposure toFermentationFucoseGalactoseGene ClusterGenitourinary systemGlucosamineGlucoseGlycoconjugatesHumanHuman MilkIndividualInfantInfectionIntestinesInvestigationKilogramLaboratoriesLarge IntestineLinkLipidsMetabolismMonosaccharidesNutritionalOligosaccharidesPathway interactionsPharmacologic SubstancePhasePlayPopulationProcessProductionPropertyReagentRecombinantsRecyclingReportingResearchRoleSafetySeriesSialic AcidsSmall IntestinesSolidStagingSurfaceSynthetic GenesSystemTechnologyVirus DiseasesYeastsantimicrobialefficacy trialgastrointestinalglycosyltransferasehigh riskinhibitor/antagonistlarge scale productionmicrobialmicrobiomepathogenpre-clinicalprebioticspreclinical studypreventprogramsresearch clinical testingresearch studyrespiratorysafety studysafety testingsugarsugar nucleotide
项目摘要
DESCRIPTION (provided by applicant): Human milk oligosaccharides (HMOs) have been thought to play a role in the development of specific intestinal flora in breast-fed infants for many years. Nowadays it is known that they are also potent inhibitors of bacterial adhesion to epithelial surfaces (initial stage of the infection process). Oligosaccharides are not hydrolyzed in the upper small intestine and reach the large intestine intact, where they serve as substrates for bacterial metabolism. Thus, HMOs are considered as the ''dietary fiber'' of human milk. Another characteristic of oligosaccharides is their proposed ''anti-infective effect''. This role is achieved thanks to their capacity to inhibit the adhesion of bacteria to the epithelial surfaces, thereby playing an important protective role against infection in the gastrointestinal, respiratory and urogenital tracts by direct and indirect mechanisms. Therefore, HMOs have antimicrobial activity and may be useful in treating and/or preventing specific enteric bacterial and viral infections. However, the road to convert HMOs into pharmaceuticals or nutritional substances has been blocked by the lack of pure, single component oligosaccharides from human milk in quantities large enough for scientific investigation, as well as preclinical tolerance and safety studies and for safety and clinical testing in populations that are exposed to gastrointestinal pathogens. Therefore, this proposed research program aims to develop practical processes to produce HMOs on multi-gram to kilo-gram scales. Since it was repeatedly reported that 2-linked fucosyloligosaccharides exhibited more antimicrobial activity than non-2-linked fucosyloligosaccharides, we will choose five 2-linked fucosyloligosaccharides such as 2'-FL, LNF-I, 2H-antigen, LDFH-I and Ley as our main targets. Moreover, non-2-linked fucosyloligosaccharides LNF-II and LNF-III will provide us the opportunity to confirm the observation of higher antimicrobial activity for 2-linked fucosyloligosaccharides. In addition, the non-fucosylated oligosaccharide LNT and LNnT will provide control experiments to evaluate the effect of fucose in oligosaccharides. Over the past 14 years, the Wang lab has been developing enzymatic oligosaccharides synthesis. We have invented and further developed the "superbeads" and "superbug" technology for large scale oligosaccharide production. The most efficient approach for oligosaccharide synthesis is to follow the natural carbohydrate biosynthetic pathway where oligosaccharides are assembled together by specific glycosyltransferases using individual sugar nucleotides as building blocks. These building blocks are themselves biosynthesized and recycled from individual monosaccharides through a series of biosynthetic enzymes. For small to medium scale synthesis of oligosaccharides, Wang has developed simple solid phase synthetic systems by immobilizing all the necessary biosynthetic enzymes onto a so-called "superbeads". These beads function as stable and versatile synthetic reagents, which can be used to synthesize a variety of glycoconjugates in cell-free systems. For large-scale production, Wang "superbug" essentially transfers the entire natural biosynthetic pathway into an E. coli strain. The approach includes cloning each enzyme along the biosynthetic pathway and connecting the genes of these enzymes together to produce an artificial gene cluster. A recombinant E. coli transformed with such a gene cluster is then used to produce the oligosaccharide through fermentation and purification. Thus, the "superbeads" and "superbug" approaches will be used in this program to produce the 9 oligosaccharides. Specifically, there are four aims: Aim I: Production of HMOs by immobilizing multiple enzymes (superbeads). This involves investigation on the necessary microbial glycosyltransferases, development of superbeads for UDP-GlcNAc, UDP-Gal and GDP-Fuc production, and combination of the glycosyltransferases with sugar nucleotide production to produce oligosaccharides. Aim II: Production of HMOs by recombinant E. coli (Superbug), which involves combination of the biosynthetic pathways of these HMOs into one or several recombinant E. coli strains. Aim III: Production of HMOs by GRAS (Generally Recognized as Safe) yeast cells. This new system will provide safer production system for HMOs synthesis. Aim IV: Characterization of the oligosaccharides through systematic biomedical and microbiome approaches in collaboration with other specialized laboratories, also in our own lab, with the advantage of multi-gram or kilo-gram scale neutral human milk oligosaccharides produced from this project. It is expected that the biosynthetic technology developed in Aim I - III will be transferred to biotech company(s) (such as the biotech startup Carbogene USA LLC which specializes in large scale oligosaccharide production) and GMP processes will be developed to produce the oligosaccharides in quantities large enough for preclinical studies of tolerance and safety, as well as for safety, dose-ranging, and efficacy trials in infants and children who are at high risk of exposure to gastrointestinal pathogens.
描述(由申请方提供):多年来,人们一直认为人乳低聚糖(HMO)在母乳喂养婴儿的特定肠道植物群发育中发挥作用。如今,已知它们也是细菌粘附于上皮表面(感染过程的初始阶段)的有效抑制剂。寡糖在小肠上部不水解,并完整地到达大肠,在那里它们作为细菌代谢的底物。因此,HMO被认为是人乳的“膳食纤维”。低聚糖的另一个特性是它们的“抗感染作用”。这一作用的实现得益于它们抑制细菌粘附到上皮表面的能力,从而通过直接和间接机制对胃肠道、呼吸道和泌尿生殖道的感染发挥重要的保护作用。因此,HMO具有抗微生物活性,并且可用于治疗和/或预防特定的肠道细菌和病毒感染。然而,将HMO转化为药物或营养物质的道路已经被人乳中缺乏纯的单一组分低聚糖所阻断,这些低聚糖的数量足以用于科学研究,以及临床前耐受性和安全性研究以及暴露于胃肠道病原体的人群的安全性和临床试验。因此,这项拟议的研究计划旨在开发实用的工艺,以生产数克至千克规模的HMO。鉴于国内外文献报道2-连接岩藻糖基寡糖比非2-连接岩藻糖基寡糖具有更强的抑菌活性,我们选择了5种2-连接岩藻糖基寡糖,如2 '-FL、LNF-I、2 H-抗原、LDFH-I和Ley作为主要的抑菌靶点。此外,非2-连接岩藻糖基低聚糖LNF-II和LNF-III将为我们提供机会,以证实2-连接岩藻糖基低聚糖具有更高的抗微生物活性。此外,非岩藻糖基化低聚糖LNT和LNnT将提供对照实验,以评价低聚糖中岩藻糖的影响。在过去的14年里,Wang实验室一直在开发酶促低聚糖合成。我们发明并进一步开发了用于大规模低聚糖生产的“超级珠”和“超级菌”技术。寡糖合成的最有效方法是遵循天然碳水化合物生物合成途径,其中寡糖通过特定的糖基转移酶使用单独的糖核苷酸作为结构单元组装在一起。这些结构单元本身是生物合成的,并通过一系列生物合成酶从单个单糖中回收。对于低聚糖的中小规模合成,Wang通过将所有必要的生物合成酶固定在所谓的“超级珠”上开发了简单的固相合成系统。这些微珠作为稳定和通用的合成试剂,可用于在无细胞系统中合成各种糖缀合物。为了大规模生产,王“超级细菌”基本上将整个天然生物合成途径转移到一个E。大肠杆菌菌株。该方法包括沿着生物合成途径克隆每种酶,并将这些酶的基因连接在一起以产生人工基因簇。的重组大肠然后用转化了这种基因簇的大肠杆菌通过发酵和纯化生产寡糖。因此,“超级珠粒”和“超级细菌”方法将用于该程序中以产生9种寡糖。具体而言,有四个目标:目标I:通过固定多种酶(超级珠)生产HMO。这涉及对必要的微生物糖基转移酶的研究,用于UDP-GlcNAc、UDP-Gal和GDP-Fuc生产的超级珠的开发,以及糖基转移酶与糖核苷酸生产的组合以生产寡糖。目的二:利用重组大肠杆菌生产HMO。大肠杆菌(Superbug),其涉及将这些HMO的生物合成途径组合成一个或多个重组E.大肠杆菌菌株。目的III:通过GRAS(一般认为安全)酵母细胞生产HMO。这一新系统将为HMO合成提供更安全的生产系统。目标四:通过与其他专业实验室合作的系统生物医学和微生物组方法对低聚糖进行表征,也在我们自己的实验室中,利用该项目生产的数克或千克级中性人乳低聚糖的优势。预计目标I - III中开发的生物合成技术将转让给生物技术公司(如生物技术创业公司Carbogene USA LLC,专门从事大规模寡糖生产)和GMP工艺将被开发,以生产足够大的寡糖,用于耐受性和安全性的临床前研究,以及安全性,剂量范围,以及在暴露于胃肠道病原体的高风险婴儿和儿童中进行的疗效试验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peng George Wang其他文献
"Armed and disarmed" theory in the addition of an azide radical to glucals
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:3.9
- 作者:
Yunyan Zhao;Xiufang Xu;Wei Zhao;Peng George Wang; - 通讯作者:
Reply to Delanghe et al, Boudin et al, and Focosi et al
回复 Delanghe 等人、Boudin 等人和 Focosi 等人
- DOI:
10.1093/cid/ciaa1477 - 发表时间:
2020 - 期刊:
- 影响因子:11.8
- 作者:
Jiao Zhao;Mingzhao Xing;Peng George Wang - 通讯作者:
Peng George Wang
Characterization and application in recombinant emN/em-GlcNAc-protein production of a novel emendo/em-β-emN/em-acetylglucosaminidase from emListeria booriae/em
来自博氏李斯特菌的一种新型内切-β-N-乙酰氨基葡萄糖苷酶的特性及其在重组N-乙酰葡糖胺-蛋白质生产中的应用
- DOI:
10.1016/j.bioorg.2025.108290 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:4.700
- 作者:
Weian Mao;Yongheng Rong;Hongmei Zhang;Fang Yuan;Yankang Wang;Mei Wang;Linhan Wang;Peng George Wang;Min Chen;Shengjun Wang;Yun Kong - 通讯作者:
Yun Kong
Engineered yeast with PNGase F on cell surface for releasing of <em>N</em>-glycans from glycoproteins
- DOI:
10.1016/j.enzmictec.2006.10.029 - 发表时间:
2007-05-02 - 期刊:
- 影响因子:
- 作者:
Yishan Su;Houcheng Zhang;Li Gu;Min Chen;Min Xiao;Peng George Wang;Qingsheng Qi - 通讯作者:
Qingsheng Qi
Bromocoumarinplatin, Targeting Simultaneous Mitochondrion and Cell Nucleus with p53 Apoptosis Pathway to Overcome Cisplatin Resistance.
- DOI:
org/10.1016/j.bioorg.2020.103768 - 发表时间:
2020 - 期刊:
- 影响因子:
- 作者:
Jing Ma;Linrong Li;Kexin Yue;Yingguang Li;Hanfang Liu;Peng George Wang;Chaojie Wang;Jiajia Wang;Wen Luo;Songqiang Xie - 通讯作者:
Songqiang Xie
Peng George Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peng George Wang', 18)}}的其他基金
Development of A Novel Strategy to Produce Antibacterial Glycoconjugate Vaccines
开发生产抗菌糖复合物疫苗的新策略
- 批准号:
7699611 - 财政年份:2009
- 资助金额:
$ 30.9万 - 项目类别:
Investigation on Oligosaccharides as Antimicrobial and Prebiotics
低聚糖作为抗菌剂和益生元的研究
- 批准号:
7741453 - 财政年份:2009
- 资助金额:
$ 30.9万 - 项目类别:
Research and Development of a Novel System to Produce Polysaccharide Conjugate Va
多糖复合物生产新系统的研究与开发
- 批准号:
8439987 - 财政年份:2009
- 资助金额:
$ 30.9万 - 项目类别:
Research and Development of a Novel System to Produce Polysaccharide Conjugate Va
多糖复合物生产新系统的研究与开发
- 批准号:
7673238 - 财政年份:2009
- 资助金额:
$ 30.9万 - 项目类别:
Development of A Novel Strategy to Produce Antibacterial Glycoconjugate Vaccines
开发生产抗菌糖复合物疫苗的新策略
- 批准号:
7932881 - 财政年份:2009
- 资助金额:
$ 30.9万 - 项目类别:
Hunting for Endogenous Ligands for Invariant Natural Killer T Cells
寻找恒定自然杀伤 T 细胞的内源配体
- 批准号:
7699675 - 财政年份:2009
- 资助金额:
$ 30.9万 - 项目类别:
相似海外基金
Sustainable routes to anti-infective agents to combat future pandemics.
对抗未来流行病的抗感染药物的可持续途径。
- 批准号:
2775420 - 财政年份:2022
- 资助金额:
$ 30.9万 - 项目类别:
Studentship
Antibiotic K16: Elucidation and Engineering Pathways to New Anti-infective Agents.
抗生素 K16:新型抗感染药物的阐明和工程途径。
- 批准号:
BB/V008552/1 - 财政年份:2021
- 资助金额:
$ 30.9万 - 项目类别:
Research Grant
Medicinal Chemistry Optimisation of Novel Heterocyclic Anti-infective Agents
新型杂环抗感染药物的药物化学优化
- 批准号:
2599532 - 财政年份:2021
- 资助金额:
$ 30.9万 - 项目类别:
Studentship
Admin Core - Autophagy Modulators as Novel Broad-Spectrum Anti-Infective Agents
管理核心 - 自噬调节剂作为新型广谱抗感染剂
- 批准号:
9893810 - 财政年份:2020
- 资助金额:
$ 30.9万 - 项目类别:
Autophagy Modulators as Novel Broad-Spectrum Anti-Infective Agents
自噬调节剂作为新型广谱抗感染剂
- 批准号:
10364721 - 财政年份:2019
- 资助金额:
$ 30.9万 - 项目类别:
Admin Core - Autophagy Modulators as Novel Broad-Spectrum Anti-Infective Agents
管理核心 - 自噬调节剂作为新型广谱抗感染剂
- 批准号:
10364722 - 财政年份:2019
- 资助金额:
$ 30.9万 - 项目类别:
Admin Core - Autophagy Modulators as Novel Broad-Spectrum Anti-Infective Agents
管理核心 - 自噬调节剂作为新型广谱抗感染剂
- 批准号:
10573255 - 财政年份:2019
- 资助金额:
$ 30.9万 - 项目类别:
Autophagy Modulators as Novel Broad-Spectrum Anti-Infective Agents
自噬调节剂作为新型广谱抗感染剂
- 批准号:
9893808 - 财政年份:2019
- 资助金额:
$ 30.9万 - 项目类别:
Autophagy Modulators as Novel Broad-Spectrum Anti-Infective Agents
自噬调节剂作为新型广谱抗感染剂
- 批准号:
10573254 - 财政年份:2019
- 资助金额:
$ 30.9万 - 项目类别: