Integrative Cell Biophysics
综合细胞生物物理学
基本信息
- 批准号:8553953
- 负责人:
- 金额:$ 41.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AcrylamidesAffectAmino AcidsAntineoplastic AgentsAtomic Force MicroscopyBindingBiogenesisBiologicalBiological AssayBiophysicsBrainBuffersCapsid ProteinsCattleCell AdhesionCell LineCell ProliferationCell SurvivalCell membraneCell physiologyCell surfaceCell-Matrix JunctionCellsCellular StructuresCharacteristicsClathrinClathrin AdaptorsClathrin-Coated VesiclesCoated vesicleCollagenComplexCouplingDataData SetDependenceDevelopmentDoseDrug Delivery SystemsDrug resistanceEndocytosisEnvironmentEquipmentEukaryotic CellEventExtracellular MatrixFilmFingerprintFree EnergyGelHydrogelsIndiumIndividualInhibitory Concentration 50Intracellular TransportInvestigationLegLifeMammalian CellMasksMechanicsMediatingMembraneMethodsMicrotubulesMovementNeoplasm MetastasisNutrientPathway interactionsPharmaceutical PreparationsPhase TransitionPlayPredispositionPreparationProcessPropertyProtein BindingQuartzRegulationRestRoleSeriesSignaling MoleculeSolutionsSpectrum AnalysisStagingStructureSubstrate InteractionTechniquesTemperatureTestingTimeTransport ProcessVesicleWorkWound Healingalpha helixangiogenesisbasebiological systemscancer cellcoated pitcostdesignembryo tissueinstrumentationintermolecular interactionmathematical modelnanoparticleneurogenesisphotopolymerizationphysical modelpolyacrylamideprotein complexreceptor internalizationreceptor mediated endocytosisreconstitutionresearch studyresponsesimulationsingle molecule
项目摘要
We employ advanced physical and mathematical methods to understand the biophysics of complex cellular processes. A major emphasis has been on the biogenesis of coated vesicles involved in clathrin mediated endocytosis (CME) and other intracellular transport processes. CME is the principal pathway for the regulation of receptors, and internalization of certain nutrients and signaling molecules, at the plasma membrane of eukaryotic cells. The early stage of receptor mediated endocytosis involves the formation of transient structures known as clathrin coated pits (CCPs) which, depending on the detailed energetics of protein binding and associated membrane transformations, either mature into clathrin coated vesicles (CCVs) or regress and vanish from the cell surface. The former are referred to as productive CCPs and the latter as abortive CCPs. We have developed a simple physical model for CCP dynamics and have carried out Monte Carlo simulations to investigate the time development of CCP size and explain the origin of abortive pits and features of their lifetime distribution. By fitting the results of the simulations to experimental data, we have been able to estimate values of the free energy changes involved in formation of the clathrin-associated protein complexes that comprise the coat, and have shown how the binding of cargo might modify the coat parameters and thereby facilitate CCV formation. We also have derived analytical expressions for the lifetime distribution and the distribution of maximum sizes of abortive pits, which may be useful in extracting additional information about the mechanism of CCP assembly from experimental data. Moreover, we have obtained a mathematical expression for the stochastic fate of a nascent pit, i.e., whether it will disassemble or mature into clathrin coated vesicles. This generalized expression is being used to identify parameters which affect particular processes in which clathrin-mediated endocytosis plays a role. In particular, we are investigating nanoparticles that are employed as drug delivery vehicles, to establish criteria that might be used when optimizing their design.
Also, we are using atomic force microscopy (AFM) and single molecule force spectroscopy (SMFS) to characterize intermolecular interactions and domain structures of clathrin triskelions.To assess triskelion structure and triskelion-triskelion interactions, we subject purified individual triskelions, bovine-brain CCVs, and reconstituted clathrin-AP180 coats to AFM-SMFS pulling experiments and apply newly-derived analytics to extract force-extension relations from very large data sets. For individual triskelions, SMFS reveals a series of unfolding events associated with individual heavy chain alpha-helix hairpins containing ca. 30 amino acid residues. Cooperative unraveling of several hairpin domains up to the size of the known repeating motif of ca. 145 amino acid residues is also seen. We find that the clathrin lattices of AP180-mediated coats are energetically easier to unravel than those of native CCVs. The spectroscopic fingerprinting characteristics for single triskelions, clathrin-AP180 coats and CCVs vary noticeably and reveal non-trivial dependence on the force loading rate. Studies of clathrin assemblies expose weaker, but coordinated, clathrin-clathrin interactions that are indicative of the inter-leg associations essential for clathrin mediated endocytosis. In a related study, we having been using quartz crystal microbalance-dissipation (QCM-D) instrumentation to investigate the mechanical properties of the triskelions, and find that the apparent shear moduli of these structures to be approximately one to two orders of magnitude smaller than the Youngs modulus of a triskelion leg. The values of these shear moduli vary strongly with buffer properties and, to a lesser degree, also depend on properties of the substrate upon which a triskelion rests. This investigation is a continuation of our earlier work to establish the various mechanical properties of clathrin structures, which are important elements in physical models such as those mentioned above.
In a different project, relating to mechanical aspects of cell response, we are establishing a reliable method for assessing the coupling between substrate properties and fundamental cell processes such as angiogenesis, neurogenesis and cancer metastasis which are thought to be modulated by extracellular matrix stiffness. The availability of matrix substrates having well-defined stiffness profiles can be of great importance in biophysical studies of cell-substrate interaction. We thus have developed a method to fabricate bio-compatible hydrogels with a well defined and linear stiffness gradient. This method, involving the photopolymerization of films by progressively uncovering an acrylamide/bis-acrylamide solution initially covered with an opaque mask, can be easily implemented with common lab equipment. It produces linear stiffness gradients of at least 40 kPa/mm, extending from <1 kPa to 80 kPa (in units of shear modulus). Hydrogels with less steep gradients and narrower stiffness ranges can easily be produced. The hydrogels can be covalently functionalized with uniform coatings of proteins that promote cell adhesion. Cell spreading on these hydrogels linearly correlates with hydrogel stiffness, indicating that this technique effectively modifies the mechanical environment of living cells. An extension of this work will focus on understanding the effects of substrate rigidity on the collective movements of mechanically-interacting cells. Such work may have applications in studies of wound healing, cancer metastasis, and normal and aberrant development of embryonic tissues.
Finally, we are developing a high-throughput polyacrylamide (PA)-based stiffness assay which can be used to study how matrix stiffnes affects cell fate, particularly as it might mediate drug resistance. The gels were coated with collagen in order to facilitate cell attachment and proliferation. Polyacrylamide is the material of choice because it spans stiffness values from 0.3 to 300 kPa. The high-throughput format was chosen in order to facilitate obtaining dose response curves and to provide for simultaneous testing of multiple parameters. The assay is an improvement upon other techniques in terms of preparation time, robustness, and cost. This PA-based assay currently is being used to test the effect of stiffness on cancer cell responsiveness to anti-cancer drugs. In particular, we are testing multiple cell lines for their susceptibility to microtubule-targeting agents. By assessing cell viability and proliferation, and determining the drugs IC50, we should be able to establish how stiffness affects cancer cell responsiveness to these and other drugs.
我们采用先进的物理和数学方法来理解复杂细胞过程的生物物理学。一个主要的重点是参与网格蛋白介导的内吞作用(CME)和其他细胞内运输过程的包被囊泡的生物发生。CME是真核细胞质膜上受体调节、某些营养物质和信号分子内化的主要途径。受体介导的内吞作用的早期阶段包括被称为网格蛋白包被凹坑(CCPs)的瞬时结构的形成,这取决于蛋白质结合和相关膜转化的详细能量学,要么成熟为网格蛋白包被囊泡(CCVs),要么退化并从细胞表面消失。前者被称为生产性ccp,后者被称为流产ccp。我们开发了一个简单的CCP动力学物理模型,并进行了蒙特卡罗模拟,以研究CCP尺寸的时间发展,并解释流产坑的起源及其寿命分布特征。通过将模拟结果与实验数据相拟合,我们已经能够估计出构成外壳的网格蛋白相关蛋白复合物形成过程中的自由能变化值,并展示了货物的结合如何改变外壳参数,从而促进CCV的形成。我们还推导出了寿命分布和流产坑最大尺寸分布的解析表达式,这可能有助于从实验数据中提取有关CCP装配机理的附加信息。此外,我们还得到了初生坑的随机命运的数学表达式,即它是否会解体或成熟为网格蛋白包被的囊泡。这种广义表达被用来识别影响网格蛋白介导的内吞作用起作用的特定过程的参数。特别是,我们正在研究用作药物递送载体的纳米颗粒,以建立优化其设计时可能使用的标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralph Nossal其他文献
Ralph Nossal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralph Nossal', 18)}}的其他基金
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 41.49万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 41.49万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 41.49万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 41.49万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 41.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 41.49万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 41.49万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 41.49万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 41.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 41.49万 - 项目类别:
Studentship