Hoxd gene functions in digit morphogenesis and role of Gli3-Hoxd interaction

Hoxd 基因在数字形态发生中的功能以及 Gli3-Hoxd 相互作用的作用

基本信息

  • 批准号:
    8552994
  • 负责人:
  • 金额:
    $ 43.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

5'Hoxd genes play many roles during limb development and may control the effectors of morphogenesis at late stages. How Hoxd genes guide digit morphogenesis and their downstream targets remain enigmatic. We have genetic evidence that Hoxd genes regulate digit pattern and morphogenesis at late stages, after digit condensations have already formed, and may regulate joint position by directly reversing cartilage differentiation at particular sites. This role in segmentation of digits may be a major mechanism by which Hoxd genes regulate digit morphology. We have also discovered genetic and physical interactions between 5Hoxd and Gli3 that modify Gli3R function (and hence Shh output), converting Gli3R to an activator, and are currently investigating Gli3-Hoxd interaction roles in developing limb. We and others previously demonstrated a very early role for 5'Hoxd genes in activating Sonic hedgehog (Shh) expression and interactions between Hand2, Hoxd, and Gli3 proteins regulate the level of Shh expression. Gli3-Hox interactions may modulate Gli3 repressor activity and activate targets in other Shh-dependent contexts, such as normal or neoplastic renewal of skin and gut epithelia. Gli3-Hox interactions may also play a role in regulation of cartilage versus joint formation, which may have relevance for the homeostasis of the skeletal system and skeletal diseases, as well as skeletal birth defects. The major questions we are addressing are summarized below. What are the time requirements for 5'Hoxd gene function?: Digit identity remains plastic even after the formation of the digit primordial chondrogenic condensations and is regulated by interdigit zones, which are also late sites of 5'Hoxd and Gli3 expression. Collaborating with Denis Duboule (Univ. Geneva), we are analyzing the time dependence of Hoxd function in the limb using a conditional Hoxd13-d11 (5'Hoxd) knock-out and tamoxifen-dependent Cre. We find that late loss of Hoxd function at interdigit stages results in a phenotype very similar to early Hoxd gene removal, with short biphalangeal digits (thumb-like), similar to the phenotype in human brachydactyly syndromes. This indicates a late requirement for Hoxd function in the limb. In a parallel study collaborating with Alex Joyner (MSKCC, NY), temporal requirements for Gli3 function in limb are also being examined, and we have found that Gli3 is required from early through late stages of limb development, playing several different roles. What role do Hoxd genes play in cartilage differentiation and joint formation?: In addition to interdigit mesenchyme, Hoxd expression continues very late at the periphery of the cartilage models for future digit bones, and normally shuts off within differentiating cartilage. Shut-off of Hoxd expression is necessary for chondrogenic differentiation to proceed and may play a key role in the normal segmentation that leads to digit joint formation, which occurs by local reversal of the cartilage differentiation program. We have found that genetic removal of several Hoxd genes results in abnormal joint formation, probably by failure to reverse cartilage differentiation at sites of joint segmentation. This is consistent with our finding that Hoxd genes repress Sox9 expression and suggests a major role for Hoxd genes in joint formation. The canonical Wnt signaling pathway is known to play an essential role in joint formation, also by antagonizing Sox9 function and reversing cartilage differentiation. We are using genetic and biochemical approaches to analyze the relation between 5'Hoxd genes and beta-catenin in promoting joint formation. We find that activated beta-catenin can restore normal joint formation in the 5?Hoxd mutant digits. Surprisingly, selective activation of stabilized beta-catenin in the interdigital tissues (which have been implicated in regulating digit identity at late stages) is required for rescue, suggesting that at least some aspects of beta-catenin and 5'Hoxd function in joint formation may occur indirectly, via signaling from interdigits. Gli3 (the transcriptional effector of sonic hedgehog signaling with which Hoxd proteins physically interact) also has very striking effects on cartilage differentiation and may play a role in conjunction with Hoxd genes in regulating the cell fate decision between cartilage and joint formation (see below). What is the role of Gli3-Hoxd interaction in digit pattern?: Hoxd transcription factors cooperate in an additive fashion to regulate digit pattern and are thought to be key targets of Shh signals. We previously found that Hoxd-Gli3 interactions serve to modify the function of Gli3 as a nuclear Sonic hedgehog-mediator either by converting Gli3-repressor into an activator of its target promoters and/or antagonizing Gli3 repressor function. During joint formation in digit precursors, Gli3 mutants form abnormal segments with excessive, abnormal joint formation extending into the cartilage elements. Reducing the 5?Hoxd dosage by half completely rescues this phenotype, allowing formation of normal joints and digits with the normal 3 bony segments. We plan to extend our analysis to determine the molecular mechanism: 1) what are the target promoters regulated by Gli3-Hoxd interaction and 2) are there other physiologic roles of Gli3-Hoxd interaction during limb development. While Hoxd genes are no longer expressed in the adult, other related Hox genes are expressed, have highly conserved in Gli3-binding domains and may modify Hh-Gli3 targets in other contexts, such as skin and gut, during normal renewal of these epithelia or during neoplastic proliferation. We have determined requirements for Gli3-HoxD protein interaction and are testing the functional effects of a dominant interfering form of Gli3 (peptide) in transfections and in chick embryos. Dependent on the outcome of such experiments, long-range plans to introduce Hox-interaction domain mutations in Gli3 into mice for analysis will be undertaken. What signaling pathways interact with Hoxd genes to regulate final digit morphogenesis?: Digit shape and numbers of joints are regulated at late stages by interdigit signals. Since Hoxd genes are functioning at the same time, it is likely that they interact with and regulated some of the signaling pathways active in interdigits, as suggested by beta-catenin rescue experiments of 5?Hoxd mutant phenotypes (see above). Elucidating signaling pathway differences between different interdigits will provide new insights on how digit identity is regulated at late stages and the potential mechanisms by which Hoxd genes may act at these stages. We are evaluating interdigits in species with evolutionary adaptations of digit morphology, to correlate morphogenetic changes with changes in signaling activity, comparing three vertebrates: chick, mouse, and bat (collaboration with J. Rasweiler, SUNY). Both bats and birds have evolved striking digit adaptations for flight and also have highly adapted hindlimbs. We are undertaking a global analysis of gene expression using DNA microarrays and/or RNAseq to screen for differences in various signaling pathways between individual interdigit samples at the RNA expression level. The expression data analysis is a collaborative effort with Drs. Ovcharenko and Agarwala in NCBI. Comparing gene expression in the interdigits and responsive digit condensations of different organisms will provide new insights on how digit identity is regulated and evolutionary adaptation occurs. Global expression profiling analyses will also be applied to 5'Hoxd mutants and following rescue (joint formation restored by beta-catenin activity) to gain further insight into critical signaling pathways regulating digit morphology and implicated in cartilage growth and joint segmentation.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Susan Mackem其他文献

Susan Mackem的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Susan Mackem', 18)}}的其他基金

Role of Shh in developmental patterning and growth of digit skeleton
Shh 在发育模式和数字骨骼生长中的作用
  • 批准号:
    9153785
  • 财政年份:
  • 资助金额:
    $ 43.4万
  • 项目类别:
Role of Shh in developmental patterning and growth of digit skeleton
Shh 在发育模式和数字骨骼生长中的作用
  • 批准号:
    9556462
  • 财政年份:
  • 资助金额:
    $ 43.4万
  • 项目类别:
Role of Brachyury in regulating notochord development and neoplasia
Brachyury 在调节脊索发育和肿瘤中的作用
  • 批准号:
    9343811
  • 财政年份:
  • 资助金额:
    $ 43.4万
  • 项目类别:
Hoxd and Gli3-Hoxd interaction roles in Hedgehog regulated digit morphogenesis
Hoxd 和 Gli3-Hoxd 相互作用在 Hedgehog 调节数字形态发生中的作用
  • 批准号:
    10702480
  • 财政年份:
  • 资助金额:
    $ 43.4万
  • 项目类别:
Hoxd and Gli3-Hoxd interaction roles in Hedgehog regulated digit morphogenesis
Hoxd 和 Gli3-Hoxd 相互作用在 Hedgehog 调节数字形态发生中的作用
  • 批准号:
    10014540
  • 财政年份:
  • 资助金额:
    $ 43.4万
  • 项目类别:
Genome-wide target analysis of Shh-activated transcription network in limb bud
肢芽中Shh激活转录网络的全基因组目标分析
  • 批准号:
    10014541
  • 财政年份:
  • 资助金额:
    $ 43.4万
  • 项目类别:
RNA interference approach to dissect roles of notochord regulators
RNA 干扰方法剖析脊索调节因子的作用
  • 批准号:
    7966091
  • 财政年份:
  • 资助金额:
    $ 43.4万
  • 项目类别:
Minimal Myc functional threshold for tumorigenesis
肿瘤发生的最小 Myc 功能阈值
  • 批准号:
    10926353
  • 财政年份:
  • 资助金额:
    $ 43.4万
  • 项目类别:
Role of Shh in developmental patterning and growth of digit skeleton
Shh 在发育模式和数字骨骼生长中的作用
  • 批准号:
    10926136
  • 财政年份:
  • 资助金额:
    $ 43.4万
  • 项目类别:
Minimal Myc functional threshold for tumorigenesis
肿瘤发生的最小 Myc 功能阈值
  • 批准号:
    10487008
  • 财政年份:
  • 资助金额:
    $ 43.4万
  • 项目类别:

相似海外基金

Binding in Adult and Child Thai
成人和儿童泰语装订
  • 批准号:
    0821036
  • 财政年份:
    2008
  • 资助金额:
    $ 43.4万
  • 项目类别:
    Standard Grant
Fcy receptor (CD32) binding: comparison of the effect of binding on b cells from neonatal and adult cattle
Fcy受体(CD32)结合:对新生牛和成年牛b细胞的结合效果比较
  • 批准号:
    368005-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 43.4万
  • 项目类别:
    University Undergraduate Student Research Awards
Functional analysis of the Zinc finger E-box binding homeobox 1 (ZEB1/TCF8) gene in the multi-step leukemogenesis of adult T-cell leukemia/lymphoma
锌指 E 盒结合同源盒 1 (ZEB1/TCF8) 基因在成人 T 细胞白血病/淋巴瘤多步白血病发生中的功能分析
  • 批准号:
    19790344
  • 财政年份:
    2007
  • 资助金额:
    $ 43.4万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Doctoral Dissertation Research: Binding Interpretations in Adult Bilingualism:
博士论文研究:成人双语的约束性解释:
  • 批准号:
    0616432
  • 财政年份:
    2006
  • 资助金额:
    $ 43.4万
  • 项目类别:
    Standard Grant
Adult Age Differences in Binding Actors and Actions
约束演员和动作的成人年龄差异
  • 批准号:
    6757012
  • 财政年份:
    2004
  • 资助金额:
    $ 43.4万
  • 项目类别:
DAT Binding by Pet in Adult ADHD
成人 ADHD 中宠物的 DAT 结合
  • 批准号:
    7017092
  • 财政年份:
    2003
  • 资助金额:
    $ 43.4万
  • 项目类别:
Dopamine Transporter Binding by PET in Adult ADHD
成人 ADHD 中 PET 与多巴胺转运蛋白的结合
  • 批准号:
    6612445
  • 财政年份:
    2003
  • 资助金额:
    $ 43.4万
  • 项目类别:
DAT Binding by Pet in Adult ADHD
成人 ADHD 中宠物的 DAT 结合
  • 批准号:
    6879707
  • 财政年份:
    2003
  • 资助金额:
    $ 43.4万
  • 项目类别:
DAT Binding by Pet in Adult ADHD
成人 ADHD 中宠物的 DAT 结合
  • 批准号:
    6741465
  • 财政年份:
    2003
  • 资助金额:
    $ 43.4万
  • 项目类别:
Dopamine Transporter Binding by PET in Adult ADHD
成人 ADHD 中 PET 与多巴胺转运蛋白的结合
  • 批准号:
    7187397
  • 财政年份:
    2003
  • 资助金额:
    $ 43.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了