Structure and Function of Viral Immunoevasins
病毒免疫球蛋白的结构和功能
基本信息
- 批准号:8555951
- 负责人:
- 金额:$ 51.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Activated Natural Killer CellAddressAffinityBindingBiochemistryBiological AssayBiological ProcessBlocking AntibodiesC57BL/6 MouseCD8B1 geneCell CommunicationCell LineCell physiologyCell surfaceCellsCommunicable DiseasesComplementComplexConfocal MicroscopyCrystallizationCytomegalovirusCytomegalovirus InfectionsDNA VirusesDendritic CellsDimerizationEmployee StrikesEngineeringEpithelial CellsEvolutionExpression LibraryFamilyFlow CytometryFractionationGenesGlycoproteinsGoalsHeadHerpesviridaeHomologous GeneHumanITGAX geneImmune responseImmune systemImmunocompromised HostImmunologic Deficiency SyndromesInbred BALB C MiceInfectionInsectaInterventionLaboratoriesLeadLectinLigandsLigationLightMajor Histocompatibility ComplexMammalsMethodsModelingMolecularMolecular StructureMurid herpesvirus 1MusNK Cell ActivationNatural Killer CellsPeptidesPopulationPredispositionProductionProtein BindingProteinsRecombinantsReporterReportingResistanceResolutionRoentgen RaysScreening procedureSiteSpleenStaining methodStainsStressStructureSurfaceSurface Plasmon ResonanceSystemT-Cell ReceptorT-LymphocyteTailTimeTransfectionViralViral PhysiologyVirionVirusVirus DiseasesWorkbasebeta-2 MicroglobulincDNA Expressioncell typehuman diseaseimprovedinsightinterestkiller T cellkiller inhibitory receptormembermolecular dynamicsmutantnovelpathogenprotein foldingreceptorresearch studythree dimensional structure
项目摘要
The focus of this work has been to understand the molecular details that control initial steps in the recognition of cells infected with pathogens such as viruses by cells of the innate and adaptive immune systems. It is our contention that understanding the function, mechanism, structure, and evolution of the interaction of virus-encoded molecules recognized by the immune system can lead not only to a deeper understanding of molecular interactions in general and of cell-cell interactions in the immune system, but also may lead to rational approaches to intervention in virus infection. In particular, we study representative members of the large family of major histocompatibility complex (MHC)-encoded molecules from a biophysical and structural perspective. Thus, we are interested in how MHC-I molecules interact with receptors on natural killer (NK) cells or on T lymphocytes through their NK and T cell receptors, respectively. Large DNA viruses of the herpesvirus family produce proteins that mimic host MHC-I molecules as part of their immunoevasive strategy, and we have directed our efforts to understand the function, cellular expression, and structure of a set of these MHC-I (referred to as MHC-Iv) molecules encoded by the mouse cytomegalovirus (mCMV). We have analyzed the expression of several of these genes after transfection in different cell types, and have established that, unlike the classical MHC-I molecules, the viral MHC-I molecules do not require either the light chain component of the classical MHC-I molecule, beta-2 microglobulin, or self-peptide for expression. Although several of these MHC-Iv molecules are expressed at the surface of virus-infected cells early after infection, several others, including m152 and m155 are not expressed well at the cell surface, suggesting that their functions result from intracellular activities. In earlier studies, we determined the structure of the MHC-Iv molecule, m144, and showed that it preserved an MHC-I like fold, though it was devoid of bound peptide. In the past year we have extended our studies to include expression, binding and structural studies of m152, m153, and m157. Each of these molecules represents a different mode of action. m152 down-regulates host molecules crucial for recognition by either T cells or NK cells, specifically it down regulates host MHC-I molecules to elude CD8 T cell recognition. In addition, m152 down-regulates ligands of the NKG2D NK cell activating receptor, in particular the RAE-1 family of stress induced molecules. m153 has an unknown function, but is highly conserved in sequence among a number of mCMV strains that derive from wild mice, suggesting a conserved function. and m157 has been shown to be a primary ligand for NK cell receptors, Ly49I, an NK cell inhibitory receptor expressed in BALB/c (virus-susceptible) mice, and Ly49H, an NK cell activation receptor expressed in resistant C57BL/6 mice.
Our studies of m152 demonstrated the direct interaction of this mCMV encoded MHC-Iv protein both with host MHC-I and the stress-induced RAE-1 molecules, and we have determined the X-ray crystallographic structure of m152 in complex with its RAE-1 ligand. This structure reveals a novel adaptation of the MHC-I protein fold for binding to RAE-1, another member of the MHC-I family. Since the NK activating receptor, NKG2D also interacts with RAE-1, it was important to compare the interaction of m152 with RAE-1 with the interaction of NKG2D. Surprisingly, the sites of interaction are the same, and competition experiments confirm this. The details of the interaction of m152 with RAE-1 have been confirmed by examination of the binding of some 18 site directed mutants of RAE-1. Thus m152 provides a novel example of an mCMV-encoded MHC-I-like protein that binds two different classes of MHC-I-like proteins.
The mCMV protein m153 provides another unique example of the varied functions of mCMV MHC-Iv molecules. Although the precise function of m153 is not known, we have explored this extensively using a reporter cell system, in which m153 expressing cells become fluorescent on ligation of their surface expressed m153 by cells bearing an m153 ligand. A number of murine cell lines from various origins were screened with these reporter cells, but none stimulated the production of GFP. Freshly isolated spleen cells and in particular CD11c+ dendritic cells (DC) are particularly potent in activation the indicator cells. Further fractionation of the spleen cell populations indicate that CD11c+ dendritic cells (DC) are the most potent in activating the indicator cells. Several complementary approaches are now underway to identify the ligand(s) of m153 expressed on DC: staining and competition for staining of known DC markers with an m153 tetramer both by flow cytometry and by confocal microscopy; antibody blocking of the reporter cell assay; subfractionation of the DC population that carries the stimulatory ligand; mass spectrometric identification of molecules that pull down from DC lysates with the m153 tetramer; and screening of a cDNA expression library generated from DC. The consistent finding, that m153, an early mCMV encoded cell surface molecule, engages a molecule expressed at the surface of DCs, is itself a provocative finding. mCMV is known to replicate in epithelial cells as well as DC, and we hypothesize that one of the functions of m153 is to promote the infectious spreading of mCMV virus particles to DCs as a further site for secondary replication.
Our studies of the function of m153 have been complemented by the determination of the crystallographic structure of this molecule, which has been solved and refined to 2.4 Angstrom resolution. The most striking feature of this new MHC-like structure is that the molecule forms a stable head to tail homodimer. To confirm the dimerization interface observed in the crystal structure of m153 we have analyzed a number of interface mutants, confirming the site of dimerization. The biological function of m153 is unknown.
Another member of the mCMV MHC-Iv family of molecules is m157, a glycoprotein expressed at the cell surface early in mCMV infection. Previous studies in other laboratories have identified both the NK cell lectin-like receptors Ly49I and Ly49H as ligands for m157. More importantly, Ly49H (expressed inC57BL/6 mice) has been shown to provide the basis of resistance to viral infection. Ly49I (the NK inhibitory receptor expressed in BALB/c may also contribute to viral susceptibility. Although the three-dimensional structure of m157 has been determined by the Garcia group, no report of m157 in complex with either Ly49I or Ly49H has been reported. This is an important and relevant problem because it addresses the issues of MHC-Iv evolution and function. We have addressed this question by engineering Ly49H and Ly49I and purifying m157 expressed in an insect cell system Surface Plasmon Resonance binding studies confirm that this recombinant m157 binds specifically to both Ly49H and Ly49I with modest affinity. Based on these binding studies, we have set up crystallization screens and have identified condition under which m157/Ly49I complexes form crystals. At the present time the best crystals have diffracted to 8 , not yet adequate for a molecular structure determination. However, additional conditions are being explored and we expect to obtain crystals of better quality. Efforts are also underway to explore the structural basis of the interaction of additional viral MHC-I-like molecules with their respective cellular ligands. mCMV m145 and m155 and ligands MULT1 and H60 have been expressed and purified, and we have determined the structure of MULT1 and expect to have the m145/MULT1 complex.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Margulies其他文献
David Margulies的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Margulies', 18)}}的其他基金
Variant detection and variant analysis process for diagnosis of CH and MODY
用于诊断 CH 和 MODY 的变异检测和变异分析流程
- 批准号:
7218897 - 财政年份:2006
- 资助金额:
$ 51.83万 - 项目类别:
Recombinant Engineering of SARS-CoV-2 Spike and N proteins
SARS-CoV-2 刺突蛋白和 N 蛋白的重组工程
- 批准号:
10272263 - 财政年份:
- 资助金额:
$ 51.83万 - 项目类别:
Molecular Genetic Analysis Of Lymphocyte Function
淋巴细胞功能的分子遗传学分析
- 批准号:
10697664 - 财政年份:
- 资助金额:
$ 51.83万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 51.83万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 51.83万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 51.83万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 51.83万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 51.83万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 51.83万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 51.83万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 51.83万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 51.83万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 51.83万 - 项目类别:
Research Grant