Neuron-glia interactions in regulation of activity-dependent signaling pathways
神经元-胶质细胞相互作用调节活性依赖性信号通路
基本信息
- 批准号:8337833
- 负责人:
- 金额:$ 33.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-30 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlzheimer&aposs DiseaseAmyotrophic Lateral SclerosisAnimalsAntioxidantsAstrocytesAttenuatedBiochemicalBiologicalBiologyBlood - brain barrier anatomyBrainCellsChemosensitizationCoculture TechniquesComplexDataDevelopmentDiseaseDrug DesignDrug Metabolic DetoxicationEnvironmentEnvironmental Risk FactorEnzymesFeedbackFosteringFoundationsFunctional disorderFutureGeneticGlutamatesGoalsHippocampus (Brain)In VitroIndividualInjuryKnock-outKnowledgeLaboratoriesLearningMediatingMediator of activation proteinMetabolicMissionMitochondriaMolecularMolecular TargetN-Methyl-D-Aspartate ReceptorsNerve DegenerationNeurodegenerative DisordersNeurogliaNeuronsOxidative StressParkinson DiseasePathogenesisPathway interactionsPharmaceutical PreparationsPhasePhysiologyPlayPotassium ChannelPredispositionPreventionProcessPublic HealthReactive Oxygen SpeciesReceptor SignalingRegulationResearchResistanceRoleSecond Messenger SystemsShapesSignal PathwaySignal TransductionSignal Transduction PathwaySignaling MoleculeSliceStrokeSynapsesSynaptic TransmissionSynaptic plasticityTestingToxinTransgenic MiceUnited States National Institutes of HealthWorkbasecell typecellular targetingdensityexcitotoxicityimprovedinnovationmouse modelnervous system disorderneuroprotectionneurotoxicityprotein aggregationresponsesecond messengersynaptic function
项目摘要
DESCRIPTION (provided by applicant): Oxidative stress plays an important role in the pathogenesis of neurodegenerative diseases and stroke. However, low levels of reactive oxygen species (ROS) function as second messengers in many neuronal signal transduction pathways, which could thus be affected either by the disease process itself or by activation of endogenous antioxidant responses. The long term goal of this research is to define how endogenous antioxidant signaling regulates synaptic transmission and thus shapes vulnerability of synaptic networks to oxidative stress. The specific objective of this application is to elucidate molecular mechanisms underlying synaptic function of Nrf2, the transcriptional regulator of inducible antioxidant response that is a key determinant of neuronal susceptibility to injury. Our central hypothesis is that astrocytes respond to neuronal activity by enhancing current flow through ROS-sensitive glutamatergic NMDA receptors (NMDARs, the key mediators of both synaptic plasticity and glutamate excitotoxicity), while simultaneously activating Nrf2 pathway to protect neurons from ROS-induced damage and neurotoxicity. This hypothesis was formulated on the basis of the strong preliminary data obtained in our laboratory and will be tested by pursuing four specific aims. First, we will elucidate the molecular mechanism that underlies activity-mediated induction of Nrf2 pathway in neuron-astrocyte co-cultures. Second, we will establish whether neuroprotection induced by synaptic activity is enhanced when neurons are co-cultured with astrocytes. Third, we will determine how glial cells increase neuronal NMDAR current density in the mixed neuron-glia environment. Fourth, we will dissect the neuron-glia signal transduction cascade that underlies Nrf2-mediated regulation of NMDAR signaling and determine the effect of Nrf2 pathway activation on circuit plasticity. These aims will be accomplished through a combination of molecular, biochemical, electrophysiological, cell biological, and toxicological approaches whose feasibility in our hands has been established through the preliminary data; to dissect the roles of individual cell types, we will use primary neuronal, glial, and mixed hippocampal cultures, as well as neuron-glia co-cultures of defined cellular composition. The overall approach takes the field in a new direction by focusing on the role of neuron- glia interactions in the regulation and function of Nrf2 signaling in the brain, an aspect of Nrf2 biology that has not yet been investigated. Completion of the proposed research is expected to advance our understanding of ROS signaling and Nrf2 physiology in the brain; ultimately, such knowledge will enable development of pharmacologic treatments capable of harnessing neuroprotective power of endogenous antioxidants without negatively affecting neuronal activity and synaptic signaling.
描述(由申请人提供):氧化应激在神经退行性疾病和中风的发病机制中起着重要作用。然而,低水平的活性氧(ROS)在许多神经元信号转导途径中充当第二信使,因此可能受到疾病过程本身或内源性抗氧化反应激活的影响。这项研究的长期目标是确定内源性抗氧化信号如何调节突触传递,从而塑造突触网络对氧化应激的脆弱性。本申请的具体目的是阐明 Nrf2 突触功能的分子机制,Nrf2 是诱导性抗氧化反应的转录调节因子,是神经元损伤易感性的关键决定因素。我们的中心假设是,星形胶质细胞通过增强流经 ROS 敏感谷氨酸能 NMDA 受体(NMDAR,突触可塑性和谷氨酸兴奋性毒性的关键介质)的电流来响应神经元活动,同时激活 Nrf2 通路以保护神经元免受 ROS 诱导的损伤和神经毒性。这一假设是根据我们实验室获得的强有力的初步数据制定的,并将通过追求四个具体目标进行测试。首先,我们将阐明神经元-星形胶质细胞共培养物中 Nrf2 通路活性介导诱导的分子机制。其次,我们将确定当神经元与星形胶质细胞共培养时,突触活动诱导的神经保护是否会增强。第三,我们将确定神经胶质细胞如何在混合神经元-神经胶质环境中增加神经元 NMDAR 电流密度。第四,我们将剖析 Nrf2 介导的 NMDAR 信号传导调节背后的神经元-胶质细胞信号转导级联,并确定 Nrf2 通路激活对电路可塑性的影响。这些目标将通过分子、生物化学、电生理学、细胞生物学和毒理学方法的结合来实现,这些方法在我们手中的可行性已通过初步数据确定;为了剖析单个细胞类型的作用,我们将使用原代神经元、神经胶质和混合海马培养物,以及具有特定细胞组成的神经元-神经胶质细胞共培养物。总体方法通过关注神经胶质细胞相互作用在大脑中 Nrf2 信号传导的调节和功能中的作用(Nrf2 生物学的一个尚未被研究的方面),将该领域引向了一个新的方向。拟议研究的完成预计将增进我们对大脑中 ROS 信号传导和 Nrf2 生理学的理解;最终,这些知识将使药物治疗的开发能够利用内源性抗氧化剂的神经保护能力,而不会对神经元活动和突触信号传导产生负面影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARTA MARGETA其他文献
MARTA MARGETA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARTA MARGETA', 18)}}的其他基金
Neuron-glia interactions in regulation of activity-dependent signaling pathways
神经元-胶质细胞相互作用调节活性依赖性信号通路
- 批准号:
8512825 - 财政年份:2011
- 资助金额:
$ 33.8万 - 项目类别:
Neuron-glia interactions in regulation of activity-dependent signaling pathways
神经元-胶质细胞相互作用调节活性依赖性信号通路
- 批准号:
8702248 - 财政年份:2011
- 资助金额:
$ 33.8万 - 项目类别:
Neuron-glia interactions in regulation of activity-dependent signaling pathways
神经元-胶质细胞相互作用调节活性依赖性信号通路
- 批准号:
8890248 - 财政年份:2011
- 资助金额:
$ 33.8万 - 项目类别:
Neuron-glia interactions in regulation of activity-dependent signaling pathways
神经元-胶质细胞相互作用调节活性依赖性信号通路
- 批准号:
8236838 - 财政年份:2011
- 资助金额:
$ 33.8万 - 项目类别:
The role of ATP-sensitive potassium channels in neurodegeneration
ATP敏感性钾通道在神经退行性变中的作用
- 批准号:
8029537 - 财政年份:2007
- 资助金额:
$ 33.8万 - 项目类别:
The role of ATP-sensitive potassium channels in neurodegeneration
ATP敏感性钾通道在神经退行性变中的作用
- 批准号:
7751207 - 财政年份:2007
- 资助金额:
$ 33.8万 - 项目类别:
The role of ATP-sensitive potassium channels in neurodegeneration
ATP敏感性钾通道在神经退行性变中的作用
- 批准号:
7348373 - 财政年份:2007
- 资助金额:
$ 33.8万 - 项目类别:
The role of ATP-sensitive potassium channels in neurodegeneration
ATP敏感性钾通道在神经退行性变中的作用
- 批准号:
7570041 - 财政年份:2007
- 资助金额:
$ 33.8万 - 项目类别:
The role of ATP-sensitive potassium channels in neurodegeneration
ATP敏感性钾通道在神经退行性变中的作用
- 批准号:
7192309 - 财政年份:2007
- 资助金额:
$ 33.8万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 33.8万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 33.8万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 33.8万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 33.8万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 33.8万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 33.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 33.8万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 33.8万 - 项目类别:
Studentship














{{item.name}}会员




