The Role of Dendrites in Thalamocortical Circuitry
树突在丘脑皮质回路中的作用
基本信息
- 批准号:8245812
- 负责人:
- 金额:$ 34.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAddressAffectAttenuatedAxonBiological AssayBiological Neural NetworksBrain regionCell membraneCellsCommunicationComplexConfocal MicroscopyDendritesDiseaseDistalElectron MicroscopyExhibitsGenerationsGeneticGoalsIndividualLabelLeadLocationMapsMeasuresMediatingMembraneMembrane PotentialsMethodsModelingN-Methyl-D-Aspartate ReceptorsN-MethylaspartateNational Institute of Neurological Disorders and StrokeNeocortexNervous system structureNeurodegenerative DisordersNeuronsProcessPropertyRelative (related person)RoleSeizuresSensorySensory ProcessSignal TransductionStagingStrategic PlanningSumSynapsesSynaptic PotentialsTestingThalamic structureTimeTreesTremorVertebral columnWhole-Cell Recordingsattenuationextracellularhippocampal pyramidal neuronin vivomillisecondnervous system disorderneurological pathologyneuronal cell bodypublic health relevancereceptive fieldresearch studyresponsesensory cortexsensory stimulussimulationvoltagevoltage gated channel
项目摘要
DESCRIPTION (provided by applicant): Many diseases of the nervous system are now thought to involve breakdowns in communication among neurons within and between brain regions. The conventional model for the flow of activity in neural networks is that synaptic inputs from neurons at one stage of processing are summed by any given neuron in the next stage. In reality though, synapses are made onto long, branching dendritic trees that can have complicated effects on normal integration of synaptic inputs. First, the dendritic membrane itself attenuates any synaptically-evoked electrical signal being conducted along the tree to the cell body. Diminished signals may be less likely to contribute to a neuronal discharge and to activate downstream synapses onto other neurons. Second, the coincident activation of several neighboring synapses can open specialized voltage-gated channels in the cell membrane, generating a dendritic "spike" in membrane potential larger than the sum of the individual synaptic signals. The aims of this project are to understand how each of these two dendritic properties affect cortical activity and processing of sensory stimuli, with a focus on the initial stages of processing in neocortex. Processing is thought to begin with sensory information from the outside world entering sensory cortex via thalamocortical synapses from thalamus to cortical layer 4. Thalamocortical synapses are thought to be individually stronger than corticocortical synapses. The first aim is to test whether thalamocortical synapses onto a cortical dendritic tree are closer to the cell body, a potential mechanism for the greater relative efficacy of thalamocortical connections. Correlative confocal and electron microscopy will be used to map the locations of synapses across the dendritic trees of cortical neurons. Receptive fields of labeled pairs of individual thalamic and cortical neurons will be measured to ask if dendritic attenuation contributes to how cortical neurons are tuned to particular sensory stimuli. The second aim is to ask if dendritic spikes boost the ability of thalamocortical synapses to directly activate cortical neurons. This will be tested by combining intracellular recording in vivo with pharmacological blockade of voltage-gated channels or individual cortical layers. Confocal microscopy will additionally be used to test whether thalamocortical synapses are sufficiently clustered along cortical dendrites to engage dendritic spikes. If these aims show that synaptic location is important, subtle mistargeting of synapses by dysfunctional genetic or activity-dependent mechanisms would lead to abnormal flow of excitation between brain regions, potentially initiating or contributing to seizure- or tremor-like activity in neurological diseases.
PUBLIC HEALTH RELEVANCE: This study will address how dendritic mechanisms of neurons influence the propagation of excitation from one brain region to the next. The results will contribute to our understanding of cellular mechanisms that, when disrupted, may produce seizures, tremors, and other neurological pathology. These goals are compatible with NINDS' Blue Sky strategic planning efforts by mapping out the connectivity of the healthy nervous system, both anatomically and functionally, and identifying cellular mechanisms that may be targeted in the treatment of neurodegenerative disorders.
描述(由申请人提供):现在认为许多神经系统疾病涉及脑区域内和脑区域之间的神经元之间的通信中断。神经网络中活动流的传统模型是,在处理的一个阶段来自神经元的突触输入被下一阶段中的任何给定神经元求和。但实际上,突触是长在树枝状的树枝上,对突触输入的正常整合有复杂的影响。首先,树突状细胞膜本身会减弱任何由突触诱发的电信号,这些电信号会沿着树传导到细胞体。减弱的信号可能不太可能有助于神经元放电并激活下游突触到其他神经元上。其次,几个相邻突触的同时激活可以打开细胞膜中的专门的电压门控通道,在膜电位中产生大于单个突触信号之和的树突“尖峰”。该项目的目的是了解这两种树突特性如何影响皮层活动和感觉刺激的处理,重点是新皮层处理的初始阶段。加工被认为是开始于来自外部世界的感觉信息通过从丘脑到皮层4层的丘脑皮层突触进入感觉皮层。丘脑皮质突触被认为是单独强于皮质皮质突触。第一个目的是测试是否丘脑皮层突触到皮层树突树更接近细胞体,一个潜在的机制,更大的相对功效的丘脑皮层连接。相关的共聚焦和电子显微镜将被用来映射的位置突触在树突状树的皮层神经元。将测量标记的单个丘脑和皮质神经元对的感受野,以询问树突衰减是否有助于皮质神经元如何调谐到特定的感觉刺激。第二个目的是询问树突棘波是否增强了丘脑皮质突触直接激活皮质神经元的能力。这将通过将体内细胞内记录与电压门控通道或单个皮质层的药理学阻断相结合来进行测试。此外,共聚焦显微镜还将用于测试丘脑皮质突触是否沿沿着皮质树突充分聚集以接合树突棘。如果这些目标表明突触位置很重要,那么由功能失调的遗传或活动依赖性机制引起的突触的细微错误定位将导致大脑区域之间的兴奋异常流动,可能引发或促成神经系统疾病中的癫痫或震颤样活动。
公共卫生相关性:这项研究将解决神经元的树突机制如何影响兴奋从一个大脑区域到下一个区域的传播。这些结果将有助于我们理解细胞机制,当被破坏时,可能会产生癫痫发作,震颤和其他神经病理学。这些目标与NINDS的蓝天战略规划工作相一致,通过绘制健康神经系统的解剖学和功能连接,并确定可能用于治疗神经退行性疾病的细胞机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Randy M Bruno其他文献
Randy M Bruno的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Randy M Bruno', 18)}}的其他基金
The behavioral functions of upper and lower cortical layers
上、下皮质层的行为功能
- 批准号:
9495029 - 财政年份:2016
- 资助金额:
$ 34.3万 - 项目类别:
The Role of Dendrites in Thalamocortical Circuitry
树突在丘脑皮质回路中的作用
- 批准号:
8640986 - 财政年份:2010
- 资助金额:
$ 34.3万 - 项目类别:
The Role of Dendrites in Thalamocortical Circuitry
树突在丘脑皮质回路中的作用
- 批准号:
8048022 - 财政年份:2010
- 资助金额:
$ 34.3万 - 项目类别:
The Role of Dendrites in Thalamocortical Circuitry
树突在丘脑皮质回路中的作用
- 批准号:
8443430 - 财政年份:2010
- 资助金额:
$ 34.3万 - 项目类别:
The Role of Dendrites in Thalamocortical Circuitry
树突在丘脑皮质回路中的作用
- 批准号:
7866265 - 财政年份:2010
- 资助金额:
$ 34.3万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 34.3万 - 项目类别:
Research Grant














{{item.name}}会员




