Statistical Methods for Complex Data in Cardiovascular Disease
心血管疾病复杂数据的统计方法
基本信息
- 批准号:8481622
- 负责人:
- 金额:$ 37.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAdvocateAreaCardiovascular DiseasesCardiovascular systemCessation of lifeCharacteristicsChronic DiseaseClinicalClinical ResearchCodeCollaborationsComplexComplicationComputer softwareConflict (Psychology)Confounding Factors (Epidemiology)Coronary Artery BypassDataData SetDatabasesDiseaseEventGoalsHarvestHazard ModelsHealth SciencesInstitutionInterventionLinkMedicalMedicare claimMedicineMethodsModelingMyocardial InfarctionObservational StudyOperative Surgical ProceduresOutcomePatientsPlayPopulationProceduresProportional Hazards ModelsRandomizedRegistriesResearchResearch InstituteResearch PersonnelResearch Project GrantsRoleSamplingSchemeScientistSpecific qualifier valueStatistical MethodsTechniquesTestingTimeUnited States Centers for Medicare and Medicaid ServicesVeinsVital StatusWeightWithdrawaladministrative databasebaseclinical practicecomparativecomparative effectivenessdata registrydesignhazardimprovedindexinginterestintervention effectmethod developmentnovelpatient populationpercutaneous coronary interventionpublic health relevancetheories
项目摘要
DESCRIPTION (provided by applicant): State-of-the-art cardiovascular disease (CVD) research presents novel, complex data-analytic challenges. This project will develop new statistical methods for such problems, motivated by the investigators' involvement in numerous CVD studies, that either break new ground, addressing issues for which no principled approaches exist, or that offer improvement over existing techniques. Many CVD studies seek to compare intervention-specific survival distributions using large observational databases. The objective of the first two aims is to develop new, optimal methods for estimating and comparing survival distributions in this setting, where the time-to-event out- come of interest may be censored, that take appropriate account of the confounding inherent in these data. The first aim is to derive optimal estimators for the survival distribution, the difference in treatment-specific
survival distributions, and the hazard ratio for two treatments in a proportional hazards model. The estimators will rely on postulated models for the propensity of treatment, the censoring distribution, and the survival distribution as functions of patient covariates and will be "doubly robust" in the sense that they will be consistent for the true quantities even if subsets of these models are misspecified. In some settings, the data are obtained from vast registries where it is infeasible to collect on all subjects the detailed covariate information needed to adjust appropriately for confounding. A stratified sample that deliberately over-represents important subsets of the patient population may be obtained, from whom rich information on potential confounding variables is collected. The second aim is to develop such doubly robust estimators for the survival distribution under this complex sampling design. The goal of many CVD studies is to compare treatments on the basis of a composite time-to-event endpoint such as time to myocardial infarction or death (whichever comes first). However, some subjects may withdraw from the study before the composite endpoint may be ascertained, rendering it censored at the time of withdrawal. However, vital status for all subjects may be obtained at the end of the study from the national death indices, so that, for subjects who withdraw, additional information on one component of the composite is available. The third aim is to develop new methods for exploiting this information to obtain more precise estimators of and more powerful tests regarding treatment-specific survival distributions for the composite endpoint. A key challenge when linking administrative databases is the potential for information on intervention to be unreliable or conflicting; e.g., in a study to compare endoscopic vs. open vein graft harvesting in
patients undergoing coronary artery bypass graft surgery, Medicare claims data may misclassify the technique used in some pro- portion of patients. The fourth aim is to develop improved methods for comparison of interventions based on a censored time-to-event outcome in this setting. Across all aims, the methods address problems both unique to CVD research and common in other chronic disease settings; thus, the latter will be broadly translatable across many disease areas.
描述(由申请人提供):最先进的心血管疾病(CVD)研究提出了新的,复杂的数据分析挑战。该项目将为这些问题开发新的统计方法,其动机是研究人员参与了许多CVD研究,这些研究要么开辟新天地,解决不存在原则性方法的问题,要么提供对现有技术的改进。许多CVD研究试图使用大型观察数据库比较干预特异性生存分布。前两个目标的目的是开发新的最佳方法,用于估计和比较这种情况下的生存分布,其中可能对关注的至事件时间结局进行删失,并适当考虑这些数据中固有的混杂因素。第一个目的是获得生存分布的最佳估计,即治疗特异性
生存分布和比例风险模型中两种治疗的风险比。估计量将依赖于假设的治疗倾向模型、删失分布和生存分布作为患者协变量的函数,并且在即使这些模型的子集被错误指定,它们对于真实量也是一致的意义上是“双重稳健”的。在某些情况下,数据是从大量登记研究中获得的,在这些登记研究中,不可能收集所有受试者的详细协变量信息,以适当调整混杂因素。可以获得故意过度代表患者人群重要子集的分层样本,从中收集关于潜在混杂变量的丰富信息。第二个目的是开发这样的双重稳健估计的生存分布下,这种复杂的抽样设计。许多CVD研究的目标是基于复合事件发生时间终点(如至心肌梗死或死亡的时间(以先发生者为准))比较治疗。然而,一些受试者可能在确定复合终点之前退出研究,从而在退出时删失。然而,所有受试者的生命状态可在研究结束时从国家死亡指数中获得,因此,对于退出研究的受试者,可获得关于复合终点中一个组分的额外信息。第三个目标是开发新的方法来利用这些信息,以获得更精确的估计和更强大的测试有关的治疗特异性生存分布的复合终点。在连接行政数据库时的一个关键挑战是,有关干预措施的信息可能不可靠或相互矛盾;例如,在一项比较内窥镜与开放静脉移植物采集的研究中,
对于接受冠状动脉旁路移植手术的患者,医疗保险声称数据可能会错误分类一些患者使用的技术。第四个目标是开发改进的方法,在这种情况下,基于删失的事件发生时间结局比较干预措施。在所有目标中,这些方法解决了CVD研究特有的问题和其他慢性病环境中常见的问题;因此,后者将在许多疾病领域广泛翻译。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean M O'Brien其他文献
Sean M O'Brien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sean M O'Brien', 18)}}的其他基金
2/2 IMPRroving Outcomes in Vascular DisEase - Aortic Dissection (IMPROVE-AD)
2/2 血管疾病的改善结果 - 主动脉夹层 (IMPROVE-AD)
- 批准号:
10663555 - 财政年份:2023
- 资助金额:
$ 37.1万 - 项目类别:
Statistical Methods for Complex Data in Cardiovascular Disease
心血管疾病复杂数据的统计方法
- 批准号:
8846659 - 财政年份:2013
- 资助金额:
$ 37.1万 - 项目类别:
Integrated Biostatistical Training for CVD Research
CVD 研究综合生物统计培训
- 批准号:
10616598 - 财政年份:2006
- 资助金额:
$ 37.1万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 37.1万 - 项目类别:
Research Grant