Decision support for dose prescription in radiation treatment planning
放射治疗计划中剂量处方的决策支持
基本信息
- 批准号:8600476
- 负责人:
- 金额:$ 20.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Recent advances in radiation therapy [1], such as Intensity Modulated Radiotherapy (IMRT) and Image-Guided Radiotherapy (IGRT), offer the ability to maximize tumor control while reducing the risk of radiation-induced damage to adjacent normal tissue. Typically, radiation therapy involves three phases: (1) prescription - where radiation oncologists (physicians) specify the dose constraints for targets and organs at risk (OAR); (2) planning - where treatment planners (physicists, dosimetrists) determine the treatment parameters to achieve the prescribed dose constraints; and (3) treatment - where therapists carry out the plan to treat the patients. In current practice, radiation oncologists typically draw on a variety of sources for dose prescription, including the 1991 "Emami" paper [8] on normal tissue tolerance, updated guidance from QUANTEC, other data in journals and texts, and their personal experiences. While these provide a general understanding of the dependence of normal tissue complication on dose distribution or the upper limits of the organ tolerance in populations of patients, their application to an individual patient is less certain and precise. Application of data and guidelines that are available in the literature is further complicated by the fact that this information is available only as narrative texts, tables and charts that are difficult to quantitatively integrate into clinical practice. Furthermore, the existing guidelines do not consider patient specific information regarding the ideal dose distribution achievable at individual treatments [9]. Radiation oncologists are frequently forced to make difficult prescription decisions by synthesizing available population level guidelines, personal experience, and their understanding of the specific patient needs on an ad hoc basis. Our overarching goal is to improve outcome by providing evidence-based decision support for radiation oncologists, planners, and therapists in every phase of the treatment process. In this project we propose to develop practical and clinically useful decision support tools to help radiation oncologists prescribe patient- specific optimal dose constraints. The specific aims are (1) Provide radiation oncologists with reliable predictions of patient-specific dose distributions achievable for the patient's anatomy and tumor volume; and (2) Provide radiation oncologists with intuitive tools that integrate patient-specific dose predictions with population-based dose guidelines to support prescription decision making. We believe the technologies developed in this project will not only improve the quality of radiotherapy prescriptions but also reduce planning time with optimal dose constraints and improve clinical outcomes.
描述(由申请人提供):放射治疗的最新进展[1],如调强放射治疗(IMRT)和图像引导放射治疗(IGRT),提供了最大限度地控制肿瘤的能力,同时降低了对邻近正常组织的辐射诱导损伤的风险。通常,放射治疗涉及三个阶段:(1)处方-放射肿瘤学家(医生)指定目标和危险器官(OAR)的剂量限制;(2)计划-治疗计划者(物理学家,剂量学家)确定治疗参数以实现规定的剂量限制;以及(3)治疗-治疗师执行治疗患者的计划。在目前的实践中,放射肿瘤学家通常利用各种来源进行剂量处方,包括1991年关于正常组织耐受性的“Emami”论文[8],QUANTEC的更新指南,期刊和文本中的其他数据以及他们的个人经验。虽然这些提供了对正常组织并发症对剂量分布或患者群体器官耐受性上限的依赖性的一般理解,但它们对个体患者的应用不太确定和精确。文献中可用的数据和指南的应用进一步复杂化,因为这些信息仅作为叙述性文本、表格和图表提供,难以定量整合到临床实践中。此外,现有指南未考虑关于个体治疗可实现的理想剂量分布的患者特定信息[9]。放射肿瘤学家经常被迫作出困难的处方决定,综合现有的人口水平的指导方针,个人经验,以及他们对特定患者需求的理解。我们的总体目标是通过在治疗过程的每个阶段为放射肿瘤学家,规划师和治疗师提供基于证据的决策支持来改善结果。在这个项目中,我们建议开发实用的和临床上有用的决策支持工具,以帮助放射肿瘤学家规定患者的具体最佳剂量限制。具体目标是(1)为放射肿瘤学家提供针对患者解剖结构和肿瘤体积可实现的患者特定剂量分布的可靠预测;以及(2)为放射肿瘤学家提供直观的工具,将患者特定剂量预测与基于人群的剂量指南相结合,以支持处方决策。我们相信,该项目中开发的技术不仅可以提高放射治疗处方的质量,还可以在最佳剂量约束下缩短计划时间,并改善临床结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yaorong Ge其他文献
Yaorong Ge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yaorong Ge', 18)}}的其他基金
Developing knowledge models to enable rapid learning in radiation therapy
开发知识模型以实现放射治疗的快速学习
- 批准号:
9282771 - 财政年份:2016
- 资助金额:
$ 20.58万 - 项目类别:
Decision support for dose prescription in radiation treatment planning
放射治疗计划中剂量处方的决策支持
- 批准号:
8507627 - 财政年份:2013
- 资助金额:
$ 20.58万 - 项目类别:
Decision support for dose prescription in radiation treatment planning
放射治疗计划中剂量处方的决策支持
- 批准号:
8242945 - 财政年份:2012
- 资助金额:
$ 20.58万 - 项目类别:
相似国自然基金
两性离子载体(zwitterionic support)作为可溶性支载体在液相有机合成中的应用
- 批准号:21002080
- 批准年份:2010
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
微生物发酵过程的自组织建模与优化控制
- 批准号:60704036
- 批准年份:2007
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于Support Vector Machines(SVMs)算法的智能型期权定价模型的研究
- 批准号:70501008
- 批准年份:2005
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Pharmacogenomics to Catalyze Decision Support in Oncology Care
药物基因组学促进肿瘤护理决策支持
- 批准号:
10675381 - 财政年份:2023
- 资助金额:
$ 20.58万 - 项目类别:
Predictive Analytics and Clinical Decision Support to Improve PrEP Prescribing in Community Health Centers (PrEDICT)
预测分析和临床决策支持,以改善社区健康中心的 PrEP 处方 (PrEDICT)
- 批准号:
10699074 - 财政年份:2023
- 资助金额:
$ 20.58万 - 项目类别:
Learning-Enabled Autonomous Decision-Support for Blood Pressure Management in Hemorrhage Resuscitation via Population-Informed Statistical Inference
通过基于人群的统计推断,为出血复苏中的血压管理提供学习型自主决策支持
- 批准号:
10727737 - 财政年份:2023
- 资助金额:
$ 20.58万 - 项目类别:
PillHarmonics: An Orchestrated Medication Clinical Decision Support Service
PillHarmonics:精心策划的药物临床决策支持服务
- 批准号:
10382886 - 财政年份:2022
- 资助金额:
$ 20.58万 - 项目类别:
Evaluation of a Mobile Application for Patients and Clinical Decision-making Support Tools for Prescribers to Decrease Opioid Misuse and Habit-forming Behaviors Following Post-operative Prescription
对患者移动应用程序和处方者临床决策支持工具的评估,以减少术后处方后阿片类药物滥用和习惯形成行为
- 批准号:
10613515 - 财政年份:2022
- 资助金额:
$ 20.58万 - 项目类别:
Improving Adherence with Statins Through Use of the Statin Choice Decision Aid
通过使用他汀类药物选择决策辅助工具提高他汀类药物的依从性
- 批准号:
10683788 - 财政年份:2022
- 资助金额:
$ 20.58万 - 项目类别:
Evaluation of a Mobile Application for Patients and Clinical Decision-making Support Tools for Prescribers to Decrease Opioid Misuse and Habit-forming Behaviors Following Post-operative Prescription
对患者移动应用程序和处方者临床决策支持工具的评估,以减少术后处方后阿片类药物滥用和习惯形成行为
- 批准号:
10390242 - 财政年份:2022
- 资助金额:
$ 20.58万 - 项目类别:
(MEnD-AKI) Multicenter Implementation of an Electronic Decision Support System for Drug-associated AKI
(MEnD-AKI) 药物相关 AKI 电子决策支持系统的多中心实施
- 批准号:
10414976 - 财政年份:2021
- 资助金额:
$ 20.58万 - 项目类别:
Longitudinal Spatial-Nonspatial Decision Support for Competing Outcomes in Head and Neck Cancer Therapy
头颈癌治疗竞争结果的纵向空间-非空间决策支持
- 批准号:
10185481 - 财政年份:2021
- 资助金额:
$ 20.58万 - 项目类别:
Longitudinal Spatial-Nonspatial Decision Support for Competing Outcomes in Head and Neck Cancer Therapy
头颈癌治疗竞争结果的纵向空间-非空间决策支持
- 批准号:
10524196 - 财政年份:2021
- 资助金额:
$ 20.58万 - 项目类别:














{{item.name}}会员




