Developing knowledge models to enable rapid learning in radiation therapy

开发知识模型以实现放射治疗的快速学习

基本信息

  • 批准号:
    9282771
  • 负责人:
  • 金额:
    $ 44.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

Abstract The present proposal aims to develop a rapid learning system for radiation therapy that can provide evidence based, patient-specific treatment guidance for physicians. Rapid-learning health care is a vision proposed by Institute of Medicine to transform the health care delivery into one which generates and applies “as rapidly as possible the evidence needed to deliver the best care for each cancer patient”. Radiation therapy (RT) is a cancer treatment modality that applies complex radiation delivery equipment to deliver highly conformal dose distribution with minimized damage to organs-at-risk (OARs). Because of the complexity of technologies, the incomplete understanding of radiation effects, and the variability of patients and patient conditions, significant improvements in RT effectiveness can come from learning to use the current RT technologies optimally. In the past a few years, our group and a number of other research groups have developed IMRT dose prediction and planning models using routine clinical plan data that produced encouraging results in learning planning knowledge and improving plan quality. These efforts represent early successes in the first aspect of a rapid learning system. However, these existing efforts have mostly focused on a few major cancer sites and are limited to the “learning” aspect. Substantial further work on expanding the models, translating the models into clinical practice, and closing the loop for continuous learning is required to truly enable rapid learning in radiation therapy. The present proposal aims to develop a comprehensive and integrated set of models and methods that will enable rapid learning in radiation therapy with the following specific aims: (1) Develop and enhance IMRT planning models to cover all major cancer sites and treatment scenarios; (2) Translate the models into clinical practice to provide best-achievable patient-specific RT planning and enable continuous improvement of the models via incremental learning; (3) Validate the knowledge models and assess the performance and value of the rapid learning framework. While this project will focus on rapid learning of the planning aspect of radiation therapy, we anticipate that the same framework can be extended to incorporate outcomes data and ultimately lead to a complete rapid learning framework that leads to continuously improved quality of cancer care at lower cost.
摘要 目前的建议旨在开发一个快速学习系统的放射治疗,可以提供证据, 为医生提供基于患者的治疗指导。快速学习医疗保健是一个愿景, 医学研究所将医疗保健服务转变为一个产生和应用“尽快, 为每位癌症患者提供最佳护理所需的证据”。 放射治疗(RT)是一种癌症治疗方式,其应用复杂的放射递送设备来治疗癌症。 提供高度适形的剂量分布,对危及器官(OAR)的损伤最小化。因为 技术的复杂性、对辐射影响的不完全理解以及患者的可变性, 患者的情况下,RT有效性的显着改善可以来自学习使用当前的RT 技术优化。 在过去的几年里,我们的小组和其他一些研究小组已经开发了IMRT剂量 使用常规临床计划数据的预测和规划模型,在学习中产生了令人鼓舞的结果 规划知识,提高规划质量。这些努力代表了在第一个方面取得的初步成功, 快速学习系统然而,这些现有的努力主要集中在几个主要的癌症部位, 仅限于“学习”方面。在扩展模型、翻译模型方面进一步开展大量工作 进入临床实践,并关闭持续学习的循环,需要真正实现快速学习, 放射治疗本提案旨在制定一套全面综合的模式, 方法,这将使快速学习放射治疗与以下具体目标:(1)发展和 增强IMRT计划模型,以覆盖所有主要癌症部位和治疗方案;(2)将IMRT计划模型翻译为 将模型应用于临床实践,以提供最佳的患者特定RT计划, 通过增量学习改进模型;(3)验证知识模型并评估 快速学习框架的绩效和价值。 虽然这个项目将侧重于快速学习放射治疗的规划方面,我们预计, 同样的框架可以扩展到纳入结果数据,并最终导致一个完整的快速 学习框架,以更低的成本不断提高癌症护理的质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yaorong Ge其他文献

Yaorong Ge的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yaorong Ge', 18)}}的其他基金

Decision support for dose prescription in radiation treatment planning
放射治疗计划中剂量处方的决策支持
  • 批准号:
    8600476
  • 财政年份:
    2013
  • 资助金额:
    $ 44.05万
  • 项目类别:
Decision support for dose prescription in radiation treatment planning
放射治疗计划中剂量处方的决策支持
  • 批准号:
    8507627
  • 财政年份:
    2013
  • 资助金额:
    $ 44.05万
  • 项目类别:
Decision support for dose prescription in radiation treatment planning
放射治疗计划中剂量处方的决策支持
  • 批准号:
    8242945
  • 财政年份:
    2012
  • 资助金额:
    $ 44.05万
  • 项目类别:

相似海外基金

Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
  • 批准号:
    10591918
  • 财政年份:
    2023
  • 资助金额:
    $ 44.05万
  • 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
  • 批准号:
    23K15383
  • 财政年份:
    2023
  • 资助金额:
    $ 44.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
  • 批准号:
    23H03556
  • 财政年份:
    2023
  • 资助金额:
    $ 44.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
  • 批准号:
    23K17212
  • 财政年份:
    2023
  • 资助金额:
    $ 44.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
  • 批准号:
    22H03519
  • 财政年份:
    2022
  • 资助金额:
    $ 44.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
  • 批准号:
    563657-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 44.05万
  • 项目类别:
    Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
  • 批准号:
    10521849
  • 财政年份:
    2022
  • 资助金额:
    $ 44.05万
  • 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
  • 批准号:
    10671022
  • 财政年份:
    2022
  • 资助金额:
    $ 44.05万
  • 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
  • 批准号:
    10670918
  • 财政年份:
    2022
  • 资助金额:
    $ 44.05万
  • 项目类别:
Adverse Effects of Using Laser Diagnostics in High-Speed Compressible Flows
在高速可压缩流中使用激光诊断的不利影响
  • 批准号:
    RGPIN-2018-04753
  • 财政年份:
    2022
  • 资助金额:
    $ 44.05万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了