The role of estrogen receptors in Alzheimer?s disease
雌激素受体在阿尔茨海默病中的作用
基本信息
- 批准号:8197400
- 负责人:
- 金额:$ 30.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:Age-MonthsAgingAging-Related ProcessAlzheimer disease preventionAlzheimer&aposs DiseaseAnimal ModelAppearanceBrainBrain PathologyBreedingCell LineCell physiologyCellsDNADataDetergentsDevelopmentDiseaseEnzymesEstrogen Receptor alphaEstrogen Receptor betaEstrogen ReceptorsEstrogen TherapyEstrogensExhibitsFemaleGene Expression RegulationGene TargetingGeneticGenetic TranscriptionGoalsHealthHumanIn VitroInsulinaseKnockout MiceKnowledgeLeadLearningMemoryMemory LossMenopauseMolecularMusNeprilysinNerve DegenerationNeurodegenerative DisordersNeuronsPathologyPathway interactionsPatientsPhysiologyPike fishProcessProductionProtein IsoformsPublicationsRegulationResearchResponse ElementsRoleScreening procedureSenile PlaquesSignal PathwaySignal Transduction PathwayTestingTherapeutic InterventionTranscription Factor AP-1Transgenic AnimalsTransgenic MiceTransgenic Organismsamyloid pathologyamyloid precursor protein processingbeta secretasebeta-site APP cleaving enzyme 1cognitive functionin vivomalemouse modelneuroblastoma cellneuropathologynormal agingpreventpromoterprotein expressionreceptorreceptor functionsecretasetransgenic model of alzheimer disease
项目摘要
DESCRIPTION (provided by applicant): For years, studies have shown that brain estrogen and estrogen receptors are critical for neuronal cell functions, yet the signal pathways and regulatory mechanisms that control estrogen function remain main unclear. It is generally believed that the reduction of estrogen after menopause in females contributes to the development of neurodegenerative diseases such as Alzheimer's disease (AD). There is an intense search for therapies related to estrogen that might provide significant benefits while avoiding the negative aspects associated with estrogen therapy. Among many such approaches, the transcriptional regulatory function of brain estrogen receptors is the most prevalent form of regulatory cellular function, although our knowledge about the role of estrogen receptors in AD is very limited. Recently, studies have shown that the two estrogen receptors, alpha and beta (ER? and ER¿), may have different functions in term of aging physiology and prevention of AD (Yamaguchi-Shima 2007, Porrello et al. 2006, Corbo et al. 2006, Pirskanen et al. 2005, Yaffe K 2007, Combarros 2007, Carroll and Pike, 2008). Our recent studies demonstrated a reduction in brain estrogen levels as well as ER¿ protein expression in female AD patients (Yue et al. 2005). However, very little are known about the cellular and molecular functions of brain ER? and ER¿ and how loss of their functions causes neurodegeneration in AD. To identify the molecular mechanisms of estrogen receptor function in preventing AD, we will use a gene-targeting approach to delete either one of the receptors, ER? or ER¿ in an Alzheimer's transgenic mouse model, APP23, to define the role of each estrogen receptor in neuronal protection and APP processing in AD. In this proposal, we will test the hypothesis that brain ER? and ER¿ are involved in distinct signal transduction pathways against amyloid pathology and cognitive functions in the AD brain. PUBLIC HEALTH RELEVANCE: For years, studies have shown that brain estrogen and estrogen receptors are critical for neuronal cell functions, yet the signal pathways and regulatory mechanisms that control estrogen function remain main unclear. It is generally believed that the reduction of estrogen after menopause in females contributes to the development of neurodegenerative diseases such as Alzheimer's disease (AD). There is an intense search for therapies related to estrogen that might provide significant benefits while avoiding the negative aspects associated with estrogen therapy. Among many such approaches, the transcriptional regulatory function of brain estrogen receptors is the most prevalent form of regulatory cellular function, although our knowledge about the role of estrogen receptors in AD is very limited. Recently, studies have shown that the two estrogen receptors, alpha and beta (ER? and ER¿), may have different functions in term of aging physiology and prevention of AD (Yamaguchi-Shima 2007, Porrello et al. 2006, Corbo et al. 2006, Pirskanen et al. 2005, Yaffe K 2007, Combarros 2007, Carroll and Pike, 2008). Our recent studies demonstrated a reduction in brain estrogen levels as well as ER¿ protein expression in female AD patients (Yue et al. 2005). However, very little are known about the cellular and molecular functions of brain ER? and ER¿ and how loss of their functions causes neurodegeneration in AD. To identify the molecular mechanisms of estrogen receptor function in preventing AD, we will use a gene-targeting approach to delete either one of the receptors, ER? or ER¿ in an Alzheimer's transgenic mouse model, APP23, to define the role of each estrogen receptor in neuronal protection and APP processing in AD. In this proposal, we will test the hypothesis that brain ER? and ER¿ are involved in distinct signal transduction pathways against amyloid pathology and cognitive functions in the AD brain.
DESCRIPTION (provided by applicant): For years, studies have shown that brain estrogen and estrogen receptors are critical for neuronal cell functions, yet the signal pathways and regulatory mechanisms that control estrogen function remain main unclear. It is generally believed that the reduction of estrogen after menopause in females contributes to the development of neurodegenerative diseases such as Alzheimer's disease (AD). There is an intense search for therapies related to estrogen that might provide significant benefits while avoiding the negative aspects associated with estrogen therapy. Among many such approaches, the transcriptional regulatory function of brain estrogen receptors is the most prevalent form of regulatory cellular function, although our knowledge about the role of estrogen receptors in AD is very limited. Recently, studies have shown that the two estrogen receptors, alpha and beta (ER? and ER¿), may have different functions in term of aging physiology and prevention of AD (Yamaguchi-Shima 2007, Porrello et al. 2006, Corbo et al. 2006, Pirskanen et al. 2005, Yaffe K 2007, Combarros 2007, Carroll and Pike, 2008). Our recent studies demonstrated a reduction in brain estrogen levels as well as ER¿ protein expression in female AD patients (Yue et al. 2005). However, very little are known about the cellular and molecular functions of brain ER? and ER¿ and how loss of their functions causes neurodegeneration in AD. To identify the molecular mechanisms of estrogen receptor function in preventing AD, we will use a gene-targeting approach to delete either one of the receptors, ER? or ER¿ in an Alzheimer's transgenic mouse model, APP23, to define the role of each estrogen receptor in neuronal protection and APP processing in AD. In this proposal, we will test the hypothesis that brain ER? and ER¿ are involved in distinct signal transduction pathways against amyloid pathology and cognitive functions in the AD brain. PUBLIC HEALTH RELEVANCE: For years, studies have shown that brain estrogen and estrogen receptors are critical for neuronal cell functions, yet the signal pathways and regulatory mechanisms that control estrogen function remain main unclear. It is generally believed that the reduction of estrogen after menopause in females contributes to the development of neurodegenerative diseases such as Alzheimer's disease (AD). There is an intense search for therapies related to estrogen that might provide significant benefits while avoiding the negative aspects associated with estrogen therapy. Among many such approaches, the transcriptional regulatory function of brain estrogen receptors is the most prevalent form of regulatory cellular function, although our knowledge about the role of estrogen receptors in AD is very limited. Recently, studies have shown that the two estrogen receptors, alpha and beta (ER? and ER¿), may have different functions in term of aging physiology and prevention of AD (Yamaguchi-Shima 2007, Porrello et al. 2006, Corbo et al. 2006, Pirskanen et al. 2005, Yaffe K 2007, Combarros 2007, Carroll and Pike, 2008). Our recent studies demonstrated a reduction in brain estrogen levels as well as ER¿ protein expression in female AD patients (Yue et al. 2005). However, very little are known about the cellular and molecular functions of brain ER? and ER¿ and how loss of their functions causes neurodegeneration in AD. To identify the molecular mechanisms of estrogen receptor function in preventing AD, we will use a gene-targeting approach to delete either one of the receptors, ER? or ER¿ in an Alzheimer's transgenic mouse model, APP23, to define the role of each estrogen receptor in neuronal protection and APP processing in AD. In this proposal, we will test the hypothesis that brain ER? and ER¿ are involved in distinct signal transduction pathways against amyloid pathology and cognitive functions in the AD brain.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rena Li其他文献
Rena Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rena Li', 18)}}的其他基金
PATHOBIOLOGICAL STUDIES OF VESSEL BACE1 IN CEREBROVASCULAR AMYLOID ANGIOPATHY
血管 BACE1 在脑血管淀粉样血管病中的病理学研究
- 批准号:
9174461 - 财政年份:2016
- 资助金额:
$ 30.33万 - 项目类别:
The role of estrogen receptors in Alzheimer?s disease
雌激素受体在阿尔茨海默病中的作用
- 批准号:
7915404 - 财政年份:2009
- 资助金额:
$ 30.33万 - 项目类别:
The role of estrogen receptors in Alzheimer?s disease
雌激素受体在阿尔茨海默病中的作用
- 批准号:
8335497 - 财政年份:2009
- 资助金额:
$ 30.33万 - 项目类别:
The role of estrogen receptors in Alzheimer?s disease
雌激素受体在阿尔茨海默病中的作用
- 批准号:
8185904 - 财政年份:2009
- 资助金额:
$ 30.33万 - 项目类别:
The role of estrogen receptors in Alzheimer?s disease
雌激素受体在阿尔茨海默病中的作用
- 批准号:
7737731 - 财政年份:2009
- 资助金额:
$ 30.33万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 30.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 30.33万 - 项目类别:
Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 30.33万 - 项目类别:
Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 30.33万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 30.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 30.33万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 30.33万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 30.33万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 30.33万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 30.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)