Mechanical Response of Biological Tissue to Shock Waves

生物组织对冲击波的机械响应

基本信息

项目摘要

Shock wave lithotripsy (SWL) revolutionized the treatment of kidney stones when it was introduced in the 1980s. However, the subsequent development of the technology has shown little improvement in clinical outcomes, such as stone free rate. Further there have been studies indicating an association with chronic complications in particular new onset hypertension and diabetes mellitus. Progress within the current funding period has identified strategies by which shock waves can be delivered with reduced acute tissue damage. The goal of Project 4 is to investigate the fundamental mechanisms of tissue damage, both to the kidney, where the PPG has confirmed its extent and identified possible chronic implication, and in the pancreas. In Aim 1 we will extend a current numerical simulation tool to predict the acoustic insult of a lithotripter to the kidney and pancreas. This tool will be used extensively to provide input data for other aims. In Aim 2, will evaluate a hypothesis developed by this group that the direct effect of repeated shocks on the tissue might initiate injury. Preliminary results from a mathematical model predict that this damage will be more important in the inner medulla where injury is first observed experimentally. In Aim 3 we will use our advanced modeling and simulation tools to understand the mediating factors in cavitation induced injury. Experimental evidence of cavitation in tissue is unambiguous, but the mechanisms by which it damages tissue and the reasons why it appears suppressed during the first few hundred shock waves are unclear. Aim 4 will apply the tools developed in the previous 3 aims to assess the acoustic insult and subsequent tissue injury to the pancreas in order to gain insight into the risk of lithotripsy inducing diabetes. Aim 5 is motivated by data from the PPG that indicates that a broad focal zone lithotripter can suppress injury and at the same time improve stone fragmentation. The goal will be to understand the physical properties of the acoustic field which result in reduced tissue damage but with effective fragmentation. Aim 6 exploits data that shows many shock waves do not hit the stone but they will still impact tissue. We plan to develop a device that can track stone location and gate current lithotripters to ensure that shock waves are only fired when the stone is on target. By reducing the number of off-target shock waves the insult to the tissue will be reduced. The overarching goal of Project 4 is to provide a strategy for shock wave lithotripsy to be delivered with fewer side effects by a combination of understanding the fundamental mechanics of the tissue damage process and developing novel technologies which will reduce the shock wave impact.
冲击波碎石术(SWL)的问世使肾结石的治疗发生了革命性的变化。 20世纪80年代。然而,该技术随后的发展在临床上几乎没有改善。 结果,如结石排净率。此外,有研究表明,慢性阻塞性肺疾病与 并发症,特别是新发的高血压和糖尿病。在当前范围内取得进展 Funding Period已经确定了可以用减少的急性组织来传递冲击波的策略 损坏。项目4的目标是研究组织损伤的基本机制,无论是对 肾脏,PPG已确认其范围并确定可能的慢性影响,以及在 胰腺。在目标1中,我们将扩展当前的数值模拟工具,以预测 对肾脏和胰腺进行碎石术。此工具将广泛用于为其他用户提供输入数据 目标。在目标2中,将评估该小组提出的假设,即反复电击的直接影响 可能会对组织造成伤害。数学模型的初步结果预测,这种损害 在实验中第一次观察到损伤的内髓中将更加重要。在《目标3》中,我们将使用 我们先进的建模和仿真工具,可帮助您了解气蚀损伤的中介因素。 组织中空化的实验证据是明确的,但它破坏的机制 组织以及在最初的几百次冲击波中看起来受到抑制的原因尚不清楚。 AIM 4将应用前3个AIMS中开发的工具来评估声学损伤和后续 对胰腺的组织损伤,以便深入了解碎石术导致糖尿病的风险。目标5是 来自PPG的数据表明,宽焦区碎石机可以抑制损伤,并在 同时提高了石材的破碎度。我们的目标将是了解 声场可减少组织损伤,但具有有效的碎裂效果。AIM 6利用数据 这表明许多冲击波不会击中石头,但它们仍然会冲击组织。我们计划开发一种 可以跟踪结石位置和门控电流的碎石器,以确保只发射冲击波 当石头对准目标时。通过减少偏离目标的冲击波的数量,对组织的侮辱将是 减少了。项目4的首要目标是为冲击波碎石术提供一种策略 结合对组织损伤的基本机制的了解,副作用更少 工艺和开发新技术,以减少冲击波的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robin Cleveland其他文献

Robin Cleveland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robin Cleveland', 18)}}的其他基金

Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
  • 批准号:
    7759402
  • 财政年份:
    2009
  • 资助金额:
    $ 17.21万
  • 项目类别:
Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
  • 批准号:
    8484828
  • 财政年份:
  • 资助金额:
    $ 17.21万
  • 项目类别:
Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
  • 批准号:
    8120862
  • 财政年份:
  • 资助金额:
    $ 17.21万
  • 项目类别:
Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
  • 批准号:
    8378229
  • 财政年份:
  • 资助金额:
    $ 17.21万
  • 项目类别:

相似海外基金

Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
  • 批准号:
    10078324
  • 财政年份:
    2023
  • 资助金额:
    $ 17.21万
  • 项目类别:
    BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
  • 批准号:
    2308300
  • 财政年份:
    2023
  • 资助金额:
    $ 17.21万
  • 项目类别:
    Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
  • 批准号:
    10033989
  • 财政年份:
    2023
  • 资助金额:
    $ 17.21万
  • 项目类别:
    Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
  • 批准号:
    23K16913
  • 财政年份:
    2023
  • 资助金额:
    $ 17.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
  • 批准号:
    10582051
  • 财政年份:
    2023
  • 资助金额:
    $ 17.21万
  • 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
  • 批准号:
    10602958
  • 财政年份:
    2023
  • 资助金额:
    $ 17.21万
  • 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
  • 批准号:
    2889921
  • 财政年份:
    2023
  • 资助金额:
    $ 17.21万
  • 项目类别:
    Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2343847
  • 财政年份:
    2023
  • 资助金额:
    $ 17.21万
  • 项目类别:
    Standard Grant
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
  • 批准号:
    2141275
  • 财政年份:
    2022
  • 资助金额:
    $ 17.21万
  • 项目类别:
    Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
  • 批准号:
    DGECR-2022-00019
  • 财政年份:
    2022
  • 资助金额:
    $ 17.21万
  • 项目类别:
    Discovery Launch Supplement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了