Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
基本信息
- 批准号:7759402
- 负责人:
- 金额:$ 23.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcousticsAcuteAdverse effectsAlgorithmsBiologicalBlood capillariesBody SurfaceCalculiCell NucleusChronicClinicalClinical DataCodeDataDevicesDiabetes MellitusElasticityElectromagneticsEnsureFamily suidaeFire - disastersFractureFrequenciesFundingGasesGoalsGrowthHematomaHypertensionImaging problemIn VitroIndividualInjuryInjury to KidneyIslet CellIslets of LangerhansKidneyKidney CalculiLawsLifeLinkLiquid substanceLiteratureLithotripsyLocationLungMeasurementMeasuresMechanicsMediatingMembraneMethodsModelingMotionMovementOutcomeOutputPancreasProcessProgram Research Project GrantsPropertyRelaxationResistanceRespirationRiskRoleShockSignal TransductionSimulateSourceStagingStressTestingTimeTissue ModelTissuesTransducersTubeUltrasonographyVertebral columnViscosityWaterattenuationbasecapillaryimprovedin vivoinsightmathematical modelmodels and simulationnew technologyphysical propertypressureresearch studyresponsesimulationtechnology developmenttissue phantomtoolvaporvasoconstrictionvirtual
项目摘要
Shock wave lithotripsy (SWL) revolutionized the treatment of kidney stones when it was introduced in the
1980s. However, the subsequent development of the technology has shown little improvement in clinical
outcomes, such as stone free rate. Further there have been studies indicating an association with chronic
complications in particular new onset hypertension and diabetes mellitus. Progress within the current
funding period has identified strategies by which shock waves can be delivered with reduced acute tissue
damage. The goal of Project 4 is to investigate the fundamental mechanisms of tissue damage, both to the
kidney, where the PPG has confirmed its extent and identified possible chronic implication, and in the
pancreas. In Aim 1 we will extend a current numerical simulation tool to predict the acoustic insult of a
lithotripter to the kidney and pancreas. This tool will be used extensively to provide input data for other
aims. In Aim 2, will evaluate a hypothesis developed by this group that the direct effect of repeated shocks
on the tissue might initiate injury. Preliminary results from a mathematical model predict that this damage
will be more important in the inner medulla where injury is first observed experimentally. In Aim 3 we will use
our advanced modeling and simulation tools to understand the mediating factors in cavitation induced injury.
Experimental evidence of cavitation in tissue is unambiguous, but the mechanisms by which it damages
tissue and the reasons why it appears suppressed during the first few hundred shock waves are unclear.
Aim 4 will apply the tools developed in the previous 3 aims to assess the acoustic insult and subsequent
tissue injury to the pancreas in order to gain insight into the risk of lithotripsy inducing diabetes. Aim 5 is
motivated by data from the PPG that indicates that a broad focal zone lithotripter can suppress injury and at
the same time improve stone fragmentation. The goal will be to understand the physical properties of the
acoustic field which result in reduced tissue damage but with effective fragmentation. Aim 6 exploits data
that shows many shock waves do not hit the stone but they will still impact tissue. We plan to develop a
device that can track stone location and gate current lithotripters to ensure that shock waves are only fired
when the stone is on target. By reducing the number of off-target shock waves the insult to the tissue will be
reduced. The overarching goal of Project 4 is to provide a strategy for shock wave lithotripsy to be delivered
with fewer side effects by a combination of understanding the fundamental mechanics of the tissue damage
process and developing novel technologies which will reduce the shock wave impact.
冲击波碎石术(SWL)在2000年被引入时,彻底改变了肾结石的治疗。
80年代然而,该技术的后续发展在临床上几乎没有改善。
结果,如结石清除率。此外,有研究表明,与慢性
并发症,特别是新发高血压和糖尿病。在当前的发展中
基金期间已经确定了冲击波可以减少急性组织的策略,
损害项目4的目标是研究组织损伤的基本机制,无论是对
肾脏,PPG已证实其程度并确定可能的慢性影响,
胰腺在目标1中,我们将扩展当前的数值模拟工具来预测
肾和胰腺的碎石机这一工具将被广泛用于为其他机构提供输入数据。
目标。在目标2中,将评估该小组提出的一个假设,即重复冲击的直接影响
可能会造成损伤数学模型的初步结果预测这种损害
在实验中首次观察到损伤的内髓中将更为重要。在目标3中,我们将使用
我们先进的建模和仿真工具,以了解介导因素在空化损伤。
组织中空化的实验证据是明确的,但其损害的机制
在最初的几百次冲击波中,它被抑制的原因尚不清楚。
目标4将应用在前3个目标中开发的工具来评估声损伤和随后的
胰腺组织损伤,以了解碎石术诱发糖尿病的风险。目标5是
PPG的数据表明,宽聚焦区碎石机可以抑制损伤,
同时提高结石破碎度。我们的目标将是了解的物理性质的
声场,其导致减少的组织损伤但具有有效的破碎。Aim 6利用数据
这表明许多冲击波没有击中结石,但它们仍然会影响组织。我们计划开发一个
一种可以跟踪结石位置和门电流碎石机的设备,以确保冲击波只被发射
当石头对准目标时通过减少偏离目标的冲击波的数量,将减少对组织的损伤。
降低项目4的总体目标是提供一种实施冲击波碎石术的策略
通过了解组织损伤的基本机制,
工艺和开发新技术,将减少冲击波的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robin Cleveland其他文献
Robin Cleveland的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robin Cleveland', 18)}}的其他基金
Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
- 批准号:
8291363 - 财政年份:
- 资助金额:
$ 23.25万 - 项目类别:
Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
- 批准号:
8484828 - 财政年份:
- 资助金额:
$ 23.25万 - 项目类别:
Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
- 批准号:
8120862 - 财政年份:
- 资助金额:
$ 23.25万 - 项目类别:
Mechanical Response of Biological Tissue to Shock Waves
生物组织对冲击波的机械响应
- 批准号:
8378229 - 财政年份:
- 资助金额:
$ 23.25万 - 项目类别:
相似海外基金
Nonlinear Acoustics for the conditioning monitoring of Aerospace structures (NACMAS)
用于航空航天结构调节监测的非线性声学 (NACMAS)
- 批准号:
10078324 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
BEIS-Funded Programmes
ORCC: Marine predator and prey response to climate change: Synthesis of Acoustics, Physiology, Prey, and Habitat In a Rapidly changing Environment (SAPPHIRE)
ORCC:海洋捕食者和猎物对气候变化的反应:快速变化环境中声学、生理学、猎物和栖息地的综合(蓝宝石)
- 批准号:
2308300 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Continuing Grant
University of Salford (The) and KP Acoustics Group Limited KTP 22_23 R1
索尔福德大学 (The) 和 KP Acoustics Group Limited KTP 22_23 R1
- 批准号:
10033989 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Knowledge Transfer Partnership
User-controllable and Physics-informed Neural Acoustics Fields for Multichannel Audio Rendering and Analysis in Mixed Reality Application
用于混合现实应用中多通道音频渲染和分析的用户可控且基于物理的神经声学场
- 批准号:
23K16913 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined radiation acoustics and ultrasound imaging for real-time guidance in radiotherapy
结合辐射声学和超声成像,用于放射治疗的实时指导
- 批准号:
10582051 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Comprehensive assessment of speech physiology and acoustics in Parkinson's disease progression
帕金森病进展中言语生理学和声学的综合评估
- 批准号:
10602958 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
The acoustics of climate change - long-term observations in the arctic oceans
气候变化的声学——北冰洋的长期观测
- 批准号:
2889921 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Studentship
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2343847 - 财政年份:2023
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant
Flow Physics and Vortex-Induced Acoustics in Bio-Inspired Collective Locomotion
仿生集体运动中的流动物理学和涡激声学
- 批准号:
DGECR-2022-00019 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Discovery Launch Supplement
Collaborative Research: Estimating Articulatory Constriction Place and Timing from Speech Acoustics
合作研究:从语音声学估计发音收缩位置和时间
- 批准号:
2141275 - 财政年份:2022
- 资助金额:
$ 23.25万 - 项目类别:
Standard Grant