Parathyroid Hormone-related Protein and the Pancreatic Beta Cell
甲状旁腺激素相关蛋白和胰腺β细胞
基本信息
- 批准号:8577579
- 负责人:
- 金额:$ 31.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-10-01 至 2014-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Parathyroid hormone-related protein (PTHrP), and its receptor, parathyroid hormone receptor 1 (PTH1R), expressed in almost every tissue including the beta cell, are required for life. Studies from our group and others, convincingly demonstrate that PTHrP improves beta cell survival, function and proliferation in rodent islets in vitro. Furthermore, we show that PTHrP has similar salutary effects in vivo, when overexpressed in beta cells of transgenic mice using the rat insulin II promoter (RIP). The RIP-PTHrP transgenic mice display islet hyperplasia, enhanced beta cell proliferation, survival, and function, with resultant hyperinsulinemia and mild hypoglycemia. Our recent data indicate that acute in vivo administration of the amino-terminal region of PTHrP(1-36), the ligand for the PTH1R, has salutary effects on beta cell function, proliferation and beta cell mass in normal mice. Most importantly, PTHrP enhances human beta cell proliferation and improves human beta cell function. However, despite the multiple positive effects of PTHrP on the beta cell, there is very little known regarding the mechanisms and signaling pathways through which PTHrP mediates its beneficial effects; or the physiological role of PTHrP signaling on normal beta cell growth and function; or how these favorable effects of PTHrP could be harnessed therapeutically to enhance islet function, proliferation, and survival. These are important issues that need to be addressed in the field of beta cell biology. This is especially critical given the current worldwide diabetes epidemic, the advent of islet transplantation as a treatment for diabetes, the current paucity of available islets for transplants, and the need to further enhance the growth and function of endogenous beta cells for the future cure or prevention of diabetes. Based on our data we hypothesize that PTHrP mediates its manifold salutary actions on the beta cell through distinct signaling pathways, that PTHrP-PTH1R signaling in the beta cell is important for beta cell growth and/or function either in basal and/or stress-induced conditions, and that these multiple positive effects of PTHrP on the beta cell can be harnessed therapeutically. Therefore, we will address these goals with the following Specific Aims: 1) To identify the signaling pathway(s) through which PTHrP enhances beta cell function, proliferation, and survival in vitro. 2) To establish the physiological role of PTH1R signaling in beta cell growth, function and survival in vivo.
3) To examine the role of PTHrP in islet transplant outcomes. Results from these studies should provide a better understanding of how PTHrP, a beta cell growth factor holding immense promise, mediates its beneficial effects on the beta cell, whether its therapeutic potential can be harnessed to improve islet growth and function in the context of islet transplantation, and in the future for regeneration of endogenous beta cells, in the prevention and cure of diabetes. PUBLIC HEALTH RELEVANCE: Studies from our lab and others have shown that parathyroid hormone-related protein (PTHrP) holds immense promise as a beta cell growth factor since it enhances function, proliferation, and survival of beta cells. Studies from the current proposal will unravel the mechanisms by which this growth factor mediates its beneficial effects in the beta cell both under normal conditions as well as under pathophysiological conditions of type 1 and type 2 diabetes. This will enable us to identify suitable molecular targets to improve islet growth and function for future therapeutic studies. Most importantly, these studies will examine whether the salutary effects of PTHrP on the beta cell can be harnessed therapeutically to improve islet transplants. These studies are especially critical given the current worldwide diabetes epidemic, the advent of islet transplantation as a treatment for diabetes, the current paucity of available islets for transplants, and the need to further enhance the growth and function of endogenous beta cells for the future cure or prevention of diabetes.
DESCRIPTION (provided by applicant): Parathyroid hormone-related protein (PTHrP), and its receptor, parathyroid hormone receptor 1 (PTH1R), expressed in almost every tissue including the beta cell, are required for life. Studies from our group and others, convincingly demonstrate that PTHrP improves beta cell survival, function and proliferation in rodent islets in vitro. Furthermore, we show that PTHrP has similar salutary effects in vivo, when overexpressed in beta cells of transgenic mice using the rat insulin II promoter (RIP). The RIP-PTHrP transgenic mice display islet hyperplasia, enhanced beta cell proliferation, survival, and function, with resultant hyperinsulinemia and mild hypoglycemia. Our recent data indicate that acute in vivo administration of the amino-terminal region of PTHrP(1-36), the ligand for the PTH1R, has salutary effects on beta cell function, proliferation and beta cell mass in normal mice. Most importantly, PTHrP enhances human beta cell proliferation and improves human beta cell function. However, despite the multiple positive effects of PTHrP on the beta cell, there is very little known regarding the mechanisms and signaling pathways through which PTHrP mediates its beneficial effects; or the physiological role of PTHrP signaling on normal beta cell growth and function; or how these favorable effects of PTHrP could be harnessed therapeutically to enhance islet function, proliferation, and survival. These are important issues that need to be addressed in the field of beta cell biology. This is especially critical given the current worldwide diabetes epidemic, the advent of islet transplantation as a treatment for diabetes, the current paucity of available islets for transplants, and the need to further enhance the growth and function of endogenous beta cells for the future cure or prevention of diabetes. Based on our data we hypothesize that PTHrP mediates its manifold salutary actions on the beta cell through distinct signaling pathways, that PTHrP-PTH1R signaling in the beta cell is important for beta cell growth and/or function either in basal and/or stress-induced conditions, and that these multiple positive effects of PTHrP on the beta cell can be harnessed therapeutically. Therefore, we will address these goals with the following Specific Aims: 1) To identify the signaling pathway(s) through which PTHrP enhances beta cell function, proliferation, and survival in vitro. 2) To establish the physiological role of PTH1R signaling in beta cell growth, function and survival in vivo.
3) To examine the role of PTHrP in islet transplant outcomes. Results from these studies should provide a better understanding of how PTHrP, a beta cell growth factor holding immense promise, mediates its beneficial effects on the beta cell, whether its therapeutic potential can be harnessed to improve islet growth and function in the context of islet transplantation, and in the future for regeneration of endogenous beta cells, in the prevention and cure of diabetes. PUBLIC HEALTH RELEVANCE: Studies from our lab and others have shown that parathyroid hormone-related protein (PTHrP) holds immense promise as a beta cell growth factor since it enhances function, proliferation, and survival of beta cells. Studies from the current proposal will unravel the mechanisms by which this growth factor mediates its beneficial effects in the beta cell both under normal conditions as well as under pathophysiological conditions of type 1 and type 2 diabetes. This will enable us to identify suitable molecular targets to improve islet growth and function for future therapeutic studies. Most importantly, these studies will examine whether the salutary effects of PTHrP on the beta cell can be harnessed therapeutically to improve islet transplants. These studies are especially critical given the current worldwide diabetes epidemic, the advent of islet transplantation as a treatment for diabetes, the current paucity of available islets for transplants, and the need to further enhance the growth and function of endogenous beta cells for the future cure or prevention of diabetes.
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rupangi C Vasavada其他文献
Rupangi C Vasavada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rupangi C Vasavada', 18)}}的其他基金
Parathyroid Hormone-Related Protein and the Pancreatic Beta Cell
甲状旁腺激素相关蛋白和胰腺β细胞
- 批准号:
8008634 - 财政年份:2009
- 资助金额:
$ 31.77万 - 项目类别:
Parathyroid Hormone-Related Protein and the Pancreatic Beta Cell
甲状旁腺激素相关蛋白和胰腺β细胞
- 批准号:
7662453 - 财政年份:2008
- 资助金额:
$ 31.77万 - 项目类别:
Parathyroid Hormone-Related Protein and the Pancreatic Beta Cell
甲状旁腺激素相关蛋白和胰腺β细胞
- 批准号:
8089556 - 财政年份:2008
- 资助金额:
$ 31.77万 - 项目类别:
相似国自然基金
无脊椎动物新型受体Parathyroid hormone receptor like (PTHRL) 的鉴定及其对赤拟谷盗表皮发育的调控
- 批准号:31872970
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Anti-parathyroid hormone-related protein (PTHrP) monoclonal antibodies against metastatic cancer
抗转移性癌症的抗甲状旁腺激素相关蛋白 (PTHrP) 单克隆抗体
- 批准号:
470394 - 财政年份:2022
- 资助金额:
$ 31.77万 - 项目类别:
Operating Grants
Role of endogenous parathyroid hormone-related protein (PTHrP) in finger formation.
内源性甲状旁腺激素相关蛋白(PTHrP)在手指形成中的作用。
- 批准号:
22K16781 - 财政年份:2022
- 资助金额:
$ 31.77万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Co-targeting parathyroid hormone-related protein (PTHrP) and osteoclast activation to counter breast cancer metastasis to bone.
共同靶向甲状旁腺激素相关蛋白 (PTHrP) 和破骨细胞激活,以对抗乳腺癌骨转移。
- 批准号:
470441 - 财政年份:2022
- 资助金额:
$ 31.77万 - 项目类别:
Operating Grants
Role of intermittent activation of parathyroid hormone receptor in exercise-induced vascular calcification
甲状旁腺激素受体间歇性激活在运动性血管钙化中的作用
- 批准号:
10534138 - 财政年份:2021
- 资助金额:
$ 31.77万 - 项目类别:
Role of intermittent activation of parathyroid hormone receptor in exercise-induced vascular calcification
甲状旁腺激素受体间歇性激活在运动性血管钙化中的作用
- 批准号:
10320968 - 财政年份:2021
- 资助金额:
$ 31.77万 - 项目类别:
Parathyroid hormone (PTH) modulates lipid metabolism in the skeletal niche
甲状旁腺激素 (PTH) 调节骨骼生态位中的脂质代谢
- 批准号:
10438842 - 财政年份:2020
- 资助金额:
$ 31.77万 - 项目类别:
Parathyroid hormone (PTH) modulates lipid metabolism in the skeletal niche
甲状旁腺激素 (PTH) 调节骨骼生态位中的脂质代谢
- 批准号:
10677565 - 财政年份:2020
- 资助金额:
$ 31.77万 - 项目类别:
Parathyroid hormone (PTH) modulates lipid metabolism in the skeletal niche
甲状旁腺激素 (PTH) 调节骨骼生态位中的脂质代谢
- 批准号:
10265544 - 财政年份:2020
- 资助金额:
$ 31.77万 - 项目类别:
Parathyroid hormone (PTH) modulates lipid metabolism in the skeletal niche
甲状旁腺激素 (PTH) 调节骨骼生态位中的脂质代谢
- 批准号:
10093413 - 财政年份:2020
- 资助金额:
$ 31.77万 - 项目类别:
Relationship between placenta derived parathyroid hormone-related protein in dairy cows and blood mineral concentrations in newborn calves
奶牛胎盘源性甲状旁腺激素相关蛋白与新生犊牛血液矿物质浓度的关系
- 批准号:
19K23709 - 财政年份:2019
- 资助金额:
$ 31.77万 - 项目类别:
Grant-in-Aid for Research Activity Start-up