Substrate Rigidity and Gene Expression: Role of Nuclear Tension
基质刚性和基因表达:核张力的作用
基本信息
- 批准号:8369592
- 负责人:
- 金额:$ 41.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:ActomyosinAddressAdhesionsAreaBiocompatible MaterialsBiological AssayBiomedical EngineeringBlood VesselsCell Culture TechniquesCell NucleusCell physiologyCellsCellular biologyCharacteristicsChemicalsChromatinChromatin StructureClinicalCollaborationsColorComplexCore FacilityCuesCytoskeletonDependenceDevelopmentDisciplineElectron MicroscopeElectron MicroscopyEndothelial CellsEngineeringEpigenetic ProcessFibroblastsFloridaFlow CytometryFluorescence MicroscopyFluorescent in Situ HybridizationGene ChipsGene ExpressionGene Expression RegulationGenesImageLaboratoriesLocationMassachusettsMechanicsMediatingMessenger RNAModificationMolecularMolecular BiologyMolecular ConformationNuclearNuclear EnvelopeNuclear MatrixNuclear StructureOpticsPerformancePositioning AttributeProcessPropertyProteinsRNA InterferenceRNA Polymerase IIResearchResearch PersonnelResourcesRoleSWP29ShapesSolidSorting - Cell MovementSurfaceTechniquesTechnologyTertiary Protein StructureTestingTissue EngineeringTranscriptTwo-Dimensional Gel ElectrophoresisUnited States National Institutes of HealthUniversitiesWorkbioimagingbiomaterial developmentcellular imagingchromatin immunoprecipitationdensitygenome-widehistone modificationimprovedinnovationinterestmolecular imagingneovascularizationnucleaseprofessorprogramsprotein complexprotein expressionresearch studyscaffoldtissue repairtissue support frame
项目摘要
DESCRIPTION (provided by applicant): The use of solid scaffolds that provide the correct mechanical and chemical cues to cells is a promising approach for guiding tissue repair, promoting tissue-scaffold integration and achieving adequate neovascularization. It is becoming increasingly clear that tuning scaffold rigidity is a powerful way to control cell function but how
scaffold rigidity regulates gene expression is not well-understood. The focus of this proposal is on the molecular mechanisms by which gene expression is controlled by the mechanical properties of the substrate. We propose to test the hypothesis that substrate rigidity controls gene expression by tuning nuclear tension. Strong support for this hypothesis comes from our preliminary results: we have found that substrate rigidity significantly alters nuclear shape through the modulation of cytoskeletal forces. We have also established that cytoskeletal force transfer to the nuclear surface is mediated by nuclear membrane embedded LINC (for linker of nucleoskeleton to cytoskeleton) complex proteins. Our approach is to 1) determine which genes are turned on or off in a substrate rigidity dependent manner, 2) examine the extent to which LINC complex proteins are required for rigidity control of genes, and 3) characterize the mechanisms by which rigidity modulation of nuclear shape controls intra-nuclear chromatin structure, spatial location of genes and epigenetic modifications that collectively regulate gene expression. Two specific aims are proposed: Aim 1: To test the hypothesis that substrate rigidity controls gene expression in a LINC complex dependent manner. Aim 2: To characterize the mechanisms by which nuclear tension regulates the expression of genes. The successful completion of these aims will have broad-ranging impact, in fields as diverse as cell-biomaterial interactions, nuclear and cell mechanics and molecular and cell biology of gene regulation. Collectively, this work is of strong interest to both engineering and scientific disciplines. The project integrates the expertise of three collaborators (Lele, Nickerson and Roux) from very different backgrounds (bioengineering, molecular biology, cell biology). The interaction between investigators of such varied background is expected to result in new and highly significant discoveries in the proposed problem area. Each investigator will contribute innovative, cutting-edge techniques in the fields of molecular biology, cell and molecular imaging, biomaterials and cell and nuclear mechanics. The completion of these aims will enhance our understanding of how scaffold properties direct vascular cells. As a result, we expect that they will promote the development of improved scaffolds for many tissue engineering applications.
PUBLIC HEALTH RELEVANCE: Many applications in tissue engineering involve cell culture on solid scaffolds with defined properties. We seek to improve scientific understanding of how scaffold properties regulate gene expression in cells. This will help improve our ability to contro cells and hence engineer tissues with superior performance.
描述(由申请人提供):使用固体支架为细胞提供正确的机械和化学线索,是引导组织修复、促进组织-支架整合和实现充分新血管形成的有前景的方法。越来越清楚的是,调整支架刚度是控制细胞功能的一种有效方法,但如何做到这一点呢?
支架刚性调节基因表达还不是很清楚。该提案的重点是基因表达由基质的机械性质控制的分子机制。我们建议测试的假设,基板刚性控制基因表达的调节核张力。这一假设的有力支持来自我们的初步结果:我们发现,基板刚度显着改变核形状通过调节细胞骨架力。我们还建立了细胞骨架力转移到核表面介导的核膜嵌入LINC(连接器的核骨架细胞骨架)复合物蛋白。我们的方法是1)确定哪些基因以底物刚性依赖性方式打开或关闭,2)检查LINC复合物蛋白对于基因的刚性控制所需的程度,以及3)表征核形状的刚性调节控制核内染色质结构、基因的空间位置和共同调节基因表达的表观遗传修饰的机制。提出了两个具体的目标:目标1:为了测试的假设,底物刚性控制基因表达的LINC复杂依赖的方式。目的2:研究核张力调控基因表达的机制。这些目标的成功实现将在细胞-生物材料相互作用、核和细胞力学以及基因调控的分子和细胞生物学等领域产生广泛的影响。总的来说,这项工作对工程和科学学科都有浓厚的兴趣。该项目整合了来自不同背景(生物工程,分子生物学,细胞生物学)的三位合作者(Lele,Nickerson和Roux)的专业知识。具有不同背景的研究人员之间的互动有望在拟议的问题领域产生新的和非常重要的发现。每位研究人员将在分子生物学、细胞和分子成像、生物材料以及细胞和核力学领域贡献创新的尖端技术。这些目标的完成将增强我们对支架特性如何指导血管细胞的理解。因此,我们期望它们将促进许多组织工程应用的改进支架的发展。
公共卫生相关性:组织工程中的许多应用涉及在具有确定特性的固体支架上进行细胞培养。我们试图提高对支架特性如何调节细胞中基因表达的科学理解。这将有助于提高我们控制细胞的能力,从而使组织具有上级性能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tanmay P. Lele其他文献
Extreme wrinkling of the nuclear lamina is a morphological marker of cancer
核纤层的极度褶皱是癌症的一种形态学标记。
- DOI:
10.1038/s41698-024-00775-8 - 发表时间:
2024-12-02 - 期刊:
- 影响因子:8.000
- 作者:
Ting-Ching Wang;Christina R. Dollahon;Sneha Mishra;Hailee Patel;Samere Abolghasemzade;Ishita Singh;Vilmos Thomazy;Daniel G. Rosen;Vlad C. Sandulache;Saptarshi Chakraborty;Tanmay P. Lele - 通讯作者:
Tanmay P. Lele
Sarcomere Mechanics in the Stress Fiber
- DOI:
10.1016/j.bpj.2008.12.3310 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Robert J. Russell;Richard B. Dickinson;Tanmay P. Lele - 通讯作者:
Tanmay P. Lele
Matrix stiffness drives drop like nuclear deformation and lamin A/C tension-dependent YAP nuclear localization
基质刚度驱动类似核变形的液滴和依赖层粘连蛋白 A/C 张力的 YAP 核定位
- DOI:
10.1038/s41467-024-54577-4 - 发表时间:
2024-11-22 - 期刊:
- 影响因子:15.700
- 作者:
Ting-Ching Wang;Samere Abolghasemzade;Brendan P. McKee;Ishita Singh;Kavya Pendyala;Mohammad Mohajeri;Hailee Patel;Aakansha Shaji;Anna L. Kersey;Kajol Harsh;Simran Kaur;Christina R. Dollahon;Sasanka Chukkapalli;Pushkar P. Lele;Daniel E. Conway;Akhilesh K. Gaharwar;Richard B. Dickinson;Tanmay P. Lele - 通讯作者:
Tanmay P. Lele
Nuclear shapes are geometrically determined by lamina excess area
- DOI:
10.1016/j.bpj.2022.11.2836 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Richard B. Dickinson;Tanmay P. Lele - 通讯作者:
Tanmay P. Lele
Cyto-Mechanics of Microtubular Buckling and Centering of Centrosome
- DOI:
10.1016/j.bpj.2010.12.1880 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Gaurav Misra;Anthony J.C. Ladd;Tanmay P. Lele;Robert Russel;Jun Wu;Richard B. Dickinson - 通讯作者:
Richard B. Dickinson
Tanmay P. Lele的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tanmay P. Lele', 18)}}的其他基金
Nuclear Dysfunction in Cancer: The Role of Mechanical Stresses Transmittedby the LINC Complex
癌症中的核功能障碍:LINC 复合体传递的机械应力的作用
- 批准号:
10303507 - 财政年份:2020
- 资助金额:
$ 41.1万 - 项目类别:
Nuclear Dysfunction in Cancer: The Role of Mechanical Stresses Transmittedby the LINC Complex
癌症中的核功能障碍:LINC 复合体传递的机械应力的作用
- 批准号:
10571797 - 财政年份:2020
- 资助金额:
$ 41.1万 - 项目类别:
Substrate Rigidity and Gene Expression: Role of Nuclear Tension
基质刚性和基因表达:核张力的作用
- 批准号:
8705518 - 财政年份:2012
- 资助金额:
$ 41.1万 - 项目类别:
Substrate Rigidity and Gene Expression: Role of Nuclear Tension
基质刚性和基因表达:核张力的作用
- 批准号:
8517716 - 财政年份:2012
- 资助金额:
$ 41.1万 - 项目类别:
SUBSTRATE RIGIDITY AND GENE EXPRESSION: Role of Nuclear Tension
基质刚性和基因表达:核张力的作用
- 批准号:
9238291 - 财政年份:2012
- 资助金额:
$ 41.1万 - 项目类别:
SUBSTRATE RIGIDITY AND GENE EXPRESSION: Role of Nuclear Tension
基质刚性和基因表达:核张力的作用
- 批准号:
9357573 - 财政年份:2012
- 资助金额:
$ 41.1万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 41.1万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 41.1万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 41.1万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 41.1万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 41.1万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 41.1万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 41.1万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 41.1万 - 项目类别:
Research Grant














{{item.name}}会员




