Microchannel Dialyzer Development

微通道透析器开发

基本信息

  • 批准号:
    8272673
  • 负责人:
  • 金额:
    $ 57.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-08-01 至 2014-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Our primary goal is the effective design of a hemodialyzer based on microscale flow features that will enable portable, long-duration home dialysis, and not impose undue restrictions on patient activity. Our preliminary studies show that microchannel technology offers enhanced mass transfer and reduced dialysate use. These attributes will enable the delivery of a device for long-duration dialysis that more closely approaches normal kidney function. Our long-term objective is to develop a hemodialyzer appropriate for long duration portable or at home dialysis. The objectives of the proposed research is to understand and control variations in flow distribution and improve hemocompatibility of dialysis devices based on engineered microscale flow systems. By controlling these critical aspects of microscale devices, we will proceed with the fabrication and testing of a prototype portable dialysis system. Our specific aims are as follows: 1) Identify criteria for device fabrication that will lead to effective blood flow distribution within the device and 2) Identify criteria for blood contact surface modification that will lead to effective hemocompatibility, minimal bubble retention and no adverse effect on mass transfer within the device The work described here is innovative, as neither the application of engineered microchannels on both the blood and dialysate sides of a membrane, nor the simultaneous, directed modification of surface chemistry and microchannel geometry to achieve highly efficient hemodialysis, has been reported to date. Having identified the quantitative criteria consistent with effective blood flow distribution and hemocompatibility, we will have secured the remaining critical elements needed to support the fabrication and testing of a prototype portable dialysis system. Development of fully integrated, portable hemodialysis units will thus be enabled and the technology can be made available to the millions of people expected to require regular dialysis therapy in the years to come. The proposed research will be conducted by faculty and staff at Oregon State University's Microproducts Breakthrough Institute, the leading research organization in the U.S. focused on the miniaturization of transport-limited processes using microchannels. PUBLIC HEALTH RELEVANCE: While short-duration hemodialysis can deliver consistent and reproducible performance with minimal loss of essential blood constituents, frequent long-duration dialysis (8 hours every day) better simulates natural kidney function, and recent studies suggest that this approach significantly reduces the negative impacts of traditional short-duration dialysis treatment (Lindsay et al. 2003, Lockrigde et al 1999, Pierators, 1999). Ideally, long-duration dialysis could be practiced at home or in a portable, potentially wearable fashion. Such an option for the efficacious management of end stage renal disease is not currently feasible, as the necessary reduction in dialysis unit size must be accompanied by a substantial improvement in filtration efficiency, as current treatments require prohibitively high dialysate flow rates. The proposed research is focused on developing a dialysis unit with the characteristics appropriate for long- duration dialysis
描述(由申请人提供):我们的主要目标是基于微尺度流动特征的血液透析器的有效设计,该血液透析器将实现便携式、长期家庭透析,并且不会对患者活动施加过度限制。我们的初步研究表明,微通道技术提供了增强的传质和减少透析液的使用。这些属性将使器械能够进行更接近正常肾功能的长期透析。我们的长期目标是开发一种适用于长期便携式或家庭透析的血液透析器。拟议研究的目的是了解和控制流量分布的变化,并改善基于工程微尺度流动系统的透析装置的血液相容性。通过控制这些关键方面的微型设备,我们将继续制造和测试的原型便携式透析系统。我们的具体目标如下:1)确定将导致装置内有效血流分布的装置制造的标准和2)确定将导致有效血液相容性、最小气泡保留和对装置内质量传递无不利影响的血液接触表面改性的标准。因为迄今为止,既没有报道在膜的血液侧和透析液侧上应用工程微通道,也没有报道同时、定向地改变表面化学和微通道几何形状以实现高效血液透析。在确定了与有效血流分布和血液相容性一致的定量标准后,我们将确保支持原型便携式透析系统的制造和测试所需的其余关键要素。因此,将能够开发完全集成的便携式血液透析装置,并使该技术可供数百万预计在未来几年需要定期透析治疗的人使用。拟议的研究将由俄勒冈州州立大学的微产品突破研究所的教职员工进行,该研究所是美国领先的研究机构,专注于使用微通道实现运输受限过程的小型化。 公共卫生相关性:虽然短期血液透析可以提供一致和可重现的性能,基本血液成分的损失最小,但频繁的长期透析(每天8小时)可以更好地模拟自然肾功能,最近的研究表明,这种方法可以显著降低传统短期透析治疗的负面影响(林赛等人,2003; Lockrigde等人,1999; Pierators,1999)。理想情况下,长时间透析可以在家里进行,或者以便携式、潜在的可穿戴方式进行。有效管理终末期肾病的这种选择目前是不可行的,因为透析单元尺寸的必要减小必须伴随着过滤效率的显著改善,因为目前的治疗需要过高的透析液流速。建议的研究重点是开发一种具有适合长期透析特性的透析装置

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Goran N Jovanovic其他文献

Goran N Jovanovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Goran N Jovanovic', 18)}}的其他基金

Microchannel Dialyzer Development
微通道透析器开发
  • 批准号:
    7986102
  • 财政年份:
    2010
  • 资助金额:
    $ 57.06万
  • 项目类别:
Microchannel Dialyzer Development
微通道透析器开发
  • 批准号:
    8463168
  • 财政年份:
    2010
  • 资助金额:
    $ 57.06万
  • 项目类别:
Microchannel Dialyzer Development
微通道透析器开发
  • 批准号:
    8118846
  • 财政年份:
    2010
  • 资助金额:
    $ 57.06万
  • 项目类别:

相似海外基金

Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
  • 批准号:
    24K17729
  • 财政年份:
    2024
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
  • 批准号:
    EP/W027593/2
  • 财政年份:
    2024
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Research Grant
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
  • 批准号:
    2901619
  • 财政年份:
    2024
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Studentship
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
  • 批准号:
    2871817
  • 财政年份:
    2024
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
  • 批准号:
    2903366
  • 财政年份:
    2024
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
  • 批准号:
    23H02303
  • 财政年份:
    2023
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
  • 批准号:
    2312325
  • 财政年份:
    2023
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
  • 批准号:
    23KJ0192
  • 财政年份:
    2023
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Reflection and adsorption of low energy hydrogen on solid surface
低能氢在固体表面的反射与吸附
  • 批准号:
    23H01158
  • 财政年份:
    2023
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
  • 批准号:
    2303933
  • 财政年份:
    2023
  • 资助金额:
    $ 57.06万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了