Single-molecule measurements of DNA topology and topoisomerases

DNA 拓扑和拓扑异构酶的单分子测量

基本信息

项目摘要

Research in Progress Currently, there are three main ongoing projects in the lab: The first project is focused on elucidating mechanistic details of the interaction between type II topoisomerases and DNA. One aspect of this interaction concerns the ability of type II topoisomerases to relax the topology of DNA to below equilibrium values. In vivo these topoisomerases are responsible for unlinking replicated chromosomes prior to cell division. Since even a single link between sister chromosomes can prevent division and induce cell death, it is important that these enzymes preferentially unlink rather than link DNA molecules. In vitro it was shown that this is the case, but the mechanism remains a mystery. Previously we have shown that a mechanism based on a sharp bend imposed on the DNA by the topoisomerase cannot explain the extent of non-equilibrium simplification, and cannot explain the differences in non-equilibrium simplification among different type II topoisomerases (bacterial, human, yeast). We have recently completed testing two alternative models of topology simplification. The models postulate either a kinetic proofreading mechanism in which the topoisomerase catalyzes strand passage only after repeatedly encountering a DNA segment, or a mechanism in which the topoisomerase specifically recognizes DNA in a hooked juxtaposition geometry. Using magnetic tweezers we measured the unlinking of two DNA strands wrapped around each other a specific number of times under a controlled force. By measuring the rate of strand passage by a type II topoisomerase as a function of the imposed geometry and force and performing Monte-Carlo simulations to obtain the distribution of DNA configurations for each condition, we were able to test both models. The data indicate that type II topoisomerases can catalyze DNA strand-transfer with each collision of two DNA segments, thereby ruling out the kinetic proof reading model. Furthermore, preliminary evidence suggests that DNA unlinking rates are not highly correlated with the degree of hookedness of the two strands. Further tests, currently underway, will allow us to unambiguously determine the validity of the hooked juxtaposition model in describing the activity of type II topoisomerases. A second aspect of the interaction between type II topoisomerases and their DNA substrates concerns the diverse topological activities exhibited by type II topoisomerases that share a common mechanism. These activities include the symmetric relaxation of positively and negatively supercoiled DNA by most type II topoisomerases, the introduction of negative supercoils by DNA gyrase, and the asymmetric relaxation of negative and positive supercoils by some type II enzymes. These differences in activity are believed to arise from differences in the C-terminal domains (CTDs), but the molecular basis underling these variations in activity have not been elucidated. We have produced a series of CTD mutants of E. coli Topoisomerase IV (Topo IV). We are employing a combination of ensemble and single molecule assays to test the effects of these mutations on the substrate selectivity. In collaboration with Neil Osheroff at Vanderbilt University, we have investigated the mechanism of chiral sensing by human type II topoisomerase (hTopo II). Employing a single-molecule magnetic-tweezers based supercoil relaxation assay, we compared the chiral discrimination activity of hTopo II with that of E. coli Topo IV. Both enzymes preferentially relax positive supercoils. Despite this functional similarity, the two enzymes employ different mechanisms to achieve chiral discrimination. For the bacterial enzyme there is a dramatic difference in the processivity of positive verses negative supercoil relaxation. In contrast chiral discrimination by the human enzyme is achieved by changes in relaxation rate rather than processivity, which we have shown is remarkably high. These results combined with the tension dependence of the relaxation rate indicate that capture of the second DNA segment (the transfer segment) is the rate determining step in the strand passage reaction of human type II topoisomerase, and by extension all type II topoisomerases. The second project is focused the mechanisms underlying multi-enzyme complex activity. RecQ helicases and topoisomerase III have been shown to functionally and physically interact in organisms ranging from bacteria to humans. Disruption of this interaction leads to severe chromosome instability, however the specific activity of the enzyme complex is unclear. Analysis of the complex is complicated by the fact that both the helicase and the topoisomerase individually modify DNA. The ability of single-molecule techniques to measure the activity of a single enzyme or enzyme complex in real time is well suited to the study of such complicated processes in which multiple activities may occur over multiple time scales. In collaboration with Mihaly Kovacs at Etovos University, Hungry, we are using single-molecule measurements of DNA unwinding to elucidate the kinetics and step size of RecQ helicase alone and in the presence of Topo III. These experiments will pave the way for experiments in which the activity and the association state of single enzymes and complexes will be assayed simultaneously using a combination of single molecule manipulation and single molecule visualization techniques. The third related project, in collaboration with Yves Pommier in NCI, is focused on the mechanisms of supercoil relaxation by human type IB topoisomerases, and in the effects of chemotherapy agents that inhibit type IB topoisomerases. Type IB topoisomerases are essential enzymes that relax over wound (positively supercoiled) DNA generated ahead of the replication machinery during DNA synthesis. Type IB topoisomerases are also important chemotherapy targets. Potent chemotherapy agents that specifically inhibit type IB topoisomerases are currently in clinical use and additional agents are in development. We are using single-molecule magnetic-tweezers based assays to measure the activity of individual type IB topoisomerases and the effects of chemotherapy agents on the activity. These experiments provide molecular level details of the supercoil relaxation process and how it is influenced by the degree of DNA supercoiling, the tension on the DNA, and the presence of specific chemotherapy agents. These measurements provide an unprecedented level of detail concerning how these important enzymes work and are inhibited by chemotherapy agents. We recently demonstrated that the human nuclear Topoisomerase IB is remarkably insensitive to the effects of twist or torque on the DNA. This observation, combined with the first direct measurement of the cleavage kinetics at the single-molecule level, allowed us to formulate a comprehensive model for the complete relaxation and religation process catalyzed by type IB topoisomerases. This model reveals a hitherto unobserved intermediate state in the relaxation cycle, and provides a mechanistic framework for the action of inhibitors. We are currently using this model to interpret the affects of three inhibitors representing different inhibition mechanisms. These projects have been enabled by the development of a unique magnetic tweezers instrument that affords high spatial and temporal resolution measurements of DNA topology combined with real-time computer control and position stabilization. The ongoing development and improvement of this magnetic tweezers instrument represents a sustained research endeavor. Future research goals: Our immediate goal is the completion of the ongoing projects in the lab. Longer term goals include the development of a new optical trap and magnetic tweezers instrument combined with single-molecule fluorescence detection.
正在进行的研究

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keir Neuman其他文献

Keir Neuman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keir Neuman', 18)}}的其他基金

Single-molecule measurements of DNA topology and topoisomerases
DNA 拓扑和拓扑异构酶的单分子测量
  • 批准号:
    8746552
  • 财政年份:
  • 资助金额:
    $ 80.57万
  • 项目类别:
Single-molecule measurements of DNA topology and topoisomerases
DNA 拓扑和拓扑异构酶的单分子测量
  • 批准号:
    9354111
  • 财政年份:
  • 资助金额:
    $ 80.57万
  • 项目类别:
Single-molecule measurements of DNA topology and topoisomerases
DNA 拓扑和拓扑异构酶的单分子测量
  • 批准号:
    10699696
  • 财政年份:
  • 资助金额:
    $ 80.57万
  • 项目类别:
Development and characterization of optical imaging probes
光学成像探头的开发和表征
  • 批准号:
    10699713
  • 财政年份:
  • 资助金额:
    $ 80.57万
  • 项目类别:
Development and characterization of optical imaging probes
光学成像探头的开发和表征
  • 批准号:
    9551422
  • 财政年份:
  • 资助金额:
    $ 80.57万
  • 项目类别:
Single-molecule measurements of collagen processing by Matrix Metalloproteinases
基质金属蛋白酶对胶原蛋白加工的单分子测量
  • 批准号:
    8344909
  • 财政年份:
  • 资助金额:
    $ 80.57万
  • 项目类别:
Single-molecule measurements of collagen processing by Matrix Metalloproteinases
基质金属蛋白酶对胶原蛋白加工的单分子测量
  • 批准号:
    8939875
  • 财政年份:
  • 资助金额:
    $ 80.57万
  • 项目类别:
Single-molecule measurements of DNA topology and topoisomerases
DNA 拓扑和拓扑异构酶的单分子测量
  • 批准号:
    8939762
  • 财政年份:
  • 资助金额:
    $ 80.57万
  • 项目类别:
Development and characterization of optical imaging probes
光学成像探头的开发和表征
  • 批准号:
    10008794
  • 财政年份:
  • 资助金额:
    $ 80.57万
  • 项目类别:
Single-molecule measurements of DNA topology and topoisomerases
DNA 拓扑和拓扑异构酶的单分子测量
  • 批准号:
    8149475
  • 财政年份:
  • 资助金额:
    $ 80.57万
  • 项目类别:

相似海外基金

Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
  • 批准号:
    24K18114
  • 财政年份:
    2024
  • 资助金额:
    $ 80.57万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
  • 批准号:
    498288
  • 财政年份:
    2024
  • 资助金额:
    $ 80.57万
  • 项目类别:
    Operating Grants
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
  • 批准号:
    10089306
  • 财政年份:
    2024
  • 资助金额:
    $ 80.57万
  • 项目类别:
    Collaborative R&D
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
  • 批准号:
    498310
  • 财政年份:
    2024
  • 资助金额:
    $ 80.57万
  • 项目类别:
    Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
  • 批准号:
    23K20339
  • 财政年份:
    2024
  • 资助金额:
    $ 80.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
  • 批准号:
    2740736
  • 财政年份:
    2024
  • 资助金额:
    $ 80.57万
  • 项目类别:
    Studentship
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
  • 批准号:
    2406592
  • 财政年份:
    2024
  • 资助金额:
    $ 80.57万
  • 项目类别:
    Standard Grant
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
  • 批准号:
    2305890
  • 财政年份:
    2024
  • 资助金额:
    $ 80.57万
  • 项目类别:
    Fellowship Award
虚弱高齢者のSuccessful Agingを支える地域課題分析指標と手法の確立
建立区域问题分析指标和方法,支持体弱老年人成功老龄化
  • 批准号:
    23K20355
  • 财政年份:
    2024
  • 资助金额:
    $ 80.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
「ケア期間」に着目したbiological aging指標の開発
开发聚焦“护理期”的生物衰老指数
  • 批准号:
    23K24782
  • 财政年份:
    2024
  • 资助金额:
    $ 80.57万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了