Detection of plaque based macrophages with light

用光检测基于斑块的巨噬细胞

基本信息

项目摘要

DESCRIPTION (provided by applicant): Project Summary/Abstract The pathologic features that predict atherosclerotic plaque rupture are large lipid collections, thinning of the fibrous cap, and infiltration of macrophages. Optical Coherence Tomography (OCT) has already been demonstrated to accurately image thin fibrous caps and large lipid cores. We now propose an approach which will detect macrophages in vulnerable plaque with OCT in patients at the time of catheterization. We demonstrate that by labeling plaque-based macrophages with intravenous gold nanoparticles we can detect the presence of macrophages for the first time using phase-sensitive OCT coupled with a stimulating laser. In this approach, optical nanoparticles engulfed by plaque-based macrophages are put into nanometer (nm) motion via thermal expansion and relaxation due to application of a pulsed laser, and this motion detected with a phase-sensitive OCT system. We have also developed novel optical nanoparticles for this approach which are excited by light maximally at a wavelength of 700-800 nm, to prevent laser interaction with competing plaque components such as hemoglobin, lipid, and arterial wall which maximally absorb light at 500-600 nm. Due to their multi-faceted surface, we have coined the term "nanorose" to describe these nanoparticles. To demonstrate cellular imaging of macrophages in intact plaque, we propose the following specific aims: Specific Aim # 1 - Specificity and sensitivity of nanoparticle (nanorose) uptake. 1.1 We will synthesize and fully characterize nanorose with controlled size, and gold and dextran amounts, to achieve strong NIR absorbance and specific cell (macrophage) uptake. 1.2 We will demonstrate specific uptake of nanorose by macrophages as opposed to endothelial and smooth muscle cells in culture via the use of flow cytometry. 1.3 We will inject nanorose iv into atherosclerotic rabbits, and perform detailed histology with fluorescence microcopy to determine both the minimal detectable dose and the specificity of nanorose uptake in plaque. Specific Aim # 2 - Ex vivo and in vivo OCT imaging of macrophages in rabbit atherosclerotic aortas with nanorose. 2.1 We will inject nanorose iv into atherosclerotic rabbits, perform OCT imaging of ex vivo aortic tissue, and compare these images with histology via RAM-11 identification of macrophages, and hyperspectral imaging of nanorose. 2.2 We will inject nanorose iv into atherosclerotic rabbits, repeat each of the histological experiments in section 2.1, but with in vivo OCT imaging. Specific Aim # 3 - Excretion and toxicity of nanorose. 3.1 We will characterize the excretion pathway of nanorose (hepatic vs. renal, organs of distribution, and blood half-life). 3.2 We will demonstrate in rabbits the absence of organ toxicity via blood chemistry for evidence of hepatic and renal damage, eosinophil production, and post-mortem examination. These studies will also be performed in collaboration with the Nanotechnology Characterization Laboratory (see letter of support). PUBLIC HEALTH RELEVANCE: Project Narrative Development of a combined contrast agent - light based approach to identify vulnerable plaques will have a significant impact on the public health. Inasmuch as atherosclerosis remains the leading cause of death in Western society, application of the proposed technique that can image plaques at risk for rupture can reduce the number of deaths from heart attack, stroke and peripheral vascular disease. Successful completion of the proposed research will provide a basis for expanded clinical studies to validate the proposed methodology in a large patient population.
描述(由申请人提供):

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARC David FELDMAN其他文献

MARC David FELDMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARC David FELDMAN', 18)}}的其他基金

Transvenous Optoacoustic-Ultrasound Guided Cold Laser Wire for Crossing Coronary Chronic Total Occlusion
经静脉光声超声引导冷激光线穿越冠状动脉慢性完全闭塞
  • 批准号:
    10612422
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Transvenous Optoacoustic-Ultrasound Guided Cold Laser Wire for Crossing Coronary Chronic Total Occlusion
经静脉光声超声引导冷激光线穿越冠状动脉慢性完全闭塞
  • 批准号:
    10435198
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
LV SV using Admittance for Hemodynamically Unstable Arrhythmia Detection
使用导纳进行 LV SV 检测血流动力学不稳定心律失常
  • 批准号:
    8887475
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
LV SV using Admittance for Hemodynamically Unstable Arrhythmia Detection
使用导纳进行 LV SV 检测血流动力学不稳定心律失常
  • 批准号:
    9250203
  • 财政年份:
    2015
  • 资助金额:
    --
  • 项目类别:
Detection of plaque based macrophages with light
用光检测基于斑块的巨噬细胞
  • 批准号:
    8394614
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Detection of plaque based macrophages with light
用光检测基于斑块的巨噬细胞
  • 批准号:
    8259055
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Detection of plaque based macrophages with light
用光检测基于斑块的巨噬细胞
  • 批准号:
    8195920
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
Admittance to measure cardiac mechanics in mice
测量小鼠心脏力学的准入
  • 批准号:
    7038599
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
Admittance to measure cardiac mechanics in mice
测量小鼠心脏力学的准入
  • 批准号:
    7268052
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
Conductance to Measure Cardiac Mechanics
用于测量心脏力学的电导
  • 批准号:
    6335940
  • 财政年份:
    2001
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了