Non-coding RNA Structure through a Mutate-and-Map Strategy
通过突变和映射策略研究非编码 RNA 结构
基本信息
- 批准号:8345532
- 负责人:
- 金额:$ 29.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-30 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:AdenineAdenosineAdoptionAlgorithmsAlkylationAnti-Bacterial AgentsAntiviral AgentsAntiviral TherapyAwardBacteriaBase PairingBenchmarkingBindingBiologicalBiological ProcessBiophysicsChemicalsChemistryCodeCollaborationsCommunitiesComputer AnalysisComputing MethodologiesConflict (Psychology)CouplingCrystallographyDataDatabasesDepositionDevelopmentDiseaseDistantDockingDrug Delivery SystemsElementsFlavin MononucleotideFoundationsFunctional RNAFundingFutureGeneticGenomeGlycineGrantHIVHydroxyl RadicalIn VitroLengthLibrariesLifeLigand BindingLigand Binding DomainLigandsLiteratureMapsMeasuresMedicineMethodsMinorModelingModificationMolecular BiologyMolecular ConformationMonitorMutateMutationNMR SpectroscopyNOESYNucleotidesOperative Surgical ProceduresOrganismParticipantPhylogenetic AnalysisPlayPropertyRNARNA FoldingResolutionRetroviridaeRoleSeedsSignal TransductionSiteSoftware ToolsSolutionsSpectrum AnalysisStructureSystemTechnologyTestingTherapeuticValidationViralWorkX-Ray Crystallographybasedimethyl sulfatein vivomutantnanoengineeringneoplastic cellnew technologynoveloxidationreceptorresearch studyrestorationsingle moleculestructural biologysuccessthree dimensional structurethree-dimensional modelingtooltwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): The continuing discoveries of non-coding RNAs (ncRNAs) and their critical roles in cellular and viral machinery are inspiring novel antibacterial antitumor, and antiviral therapies based on disabling or manipulating the RNAs involved. Unfortunately, our poor biophysical understanding of "how RNAs work" hinders the development of these potentially life-saving efforts. A critical bottleneck has been the inapplicability of crystallography, NMR, phylogenetic analysis, and current chemical methods to determine the partly ordered 3D conformations of non-coding RNAs in all their functional states. To resolve this bottleneck, we have recently invented and benchmarked a two-dimensional "mutate-and-map" (M2) technology. This strategy rapidly and comprehensively determines how every single mutation of an RNA perturbs the 2'-hydroxyl chemical accessibility of every other nucleotide, giving rich information on RNA secondary and tertiary structure. We aim here to more precisely reveal both canonical base pairs and pervasive A-minor tertiary interactions by coupling M2 to two additional chemistries, flavin-mononucleotide-induced photo-oxidation (M2-FMN) and dimethyl-sulfate alkylation (M2-DMS). We propose a high-throughput M2-rescue approach to validate the resulting inferences through "surgical" double-mutant/rescue experiments. Finally, we will apply these technologies to determine structures of mysterious states and regions in two paradigmatic systems in RNA biophysics, the add adenine-binding riboswitch and the FN double-glycine riboswitch; this critical information is not obtainable with any other approach. We will evaluate success through benchmarks on six ncRNA domains of known structure; through M2-rescue validation; and through adoption of our methods and software tools by the broader biological community. In the same way that 2D spectroscopy transformed NMR approaches to small biomolecule structure, we propose that 2D mutate-and-map technology will transform our understanding of structure in long non-coding RNAs, full-length RNA messages, and entire retroviral genomes targeted for biomedical activation or disruption.
PUBLIC HEALTH RELEVANCE: RNA molecules play fundamental roles in transmitting and regulating genetic information in all living systems, including disease-causing bacteria, retroviruses like HIV, and tumor cells. New potentially life-saving therapies that target these RNAs are being hindered by the slow rate of determining RNA folds and conformational changes. Our work aims to resolve this critical bottleneck by advancing a new chemical/computational paradigm for high-throughput RNA structure determination.
描述(申请人提供):不断发现的非编码RNA(NcRNAs)及其在细胞和病毒机制中的关键作用正在激发新的抗菌抗肿瘤药物,以及基于禁用或操纵所涉及的RNA的抗病毒疗法。不幸的是,我们对“RNA如何工作”的生物物理理解很差,阻碍了这些潜在挽救生命的努力的发展。一个关键的瓶颈是结晶学、核磁共振、系统发育分析和当前的化学方法不适用于确定非编码RNA在所有功能状态下的部分有序3D构象。为了解决这一瓶颈,我们最近发明了一种二维“突变和映射”(M2)技术,并对其进行了基准测试。这一策略快速而全面地确定了RNA的每一个单一突变是如何扰乱其他核苷酸的2‘-羟基化学可及性的,从而提供了关于RNA二级和三级结构的丰富信息。我们的目标是通过将M2与另外两个化学作用,即黄素-单核苷酸诱导的光氧化(M2-FMN)和硫酸二甲酯-烷基化(M2-DMS)耦合,更准确地揭示正则碱基对和普遍存在的A-次要三级相互作用。我们提出了一种高通量的M2救援方法,通过“外科”双突变/救援实验来验证得出的推论。最后,我们将应用这些技术来确定RNA生物物理学中两个范例系统中神秘状态和区域的结构,即ADD腺嘌呤结合核糖开关和FN双甘氨酸核糖开关;这一关键信息是任何其他方法都无法获得的。我们将通过对六个已知结构的ncRNA结构域进行基准测试、通过M2救援验证以及通过更广泛的生物界采用我们的方法和软件工具来评估成功。就像2D光谱学将核磁共振方法转变为小生物分子结构一样,我们认为2D突变和映射技术将改变我们对长非编码RNA、全长RNA消息和整个逆转录病毒基因组中用于生物医学激活或破坏的结构的理解。
与公共卫生相关:RNA分子在所有生命系统中传递和调节遗传信息方面发挥着基本作用,包括致病细菌、艾滋病毒等逆转录病毒和肿瘤细胞。针对这些RNA的新的潜在挽救生命的疗法正受到确定RNA折叠和构象变化的缓慢速度的阻碍。我们的工作旨在通过提出一种新的高通量RNA结构确定的化学/计算范式来解决这一关键瓶颈。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rhiju Das其他文献
Rhiju Das的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rhiju Das', 18)}}的其他基金
Modeling and design of complex RNA structures
复杂 RNA 结构的建模和设计
- 批准号:
10685534 - 财政年份:2017
- 资助金额:
$ 29.83万 - 项目类别:
Next-generation computational/chemical methods for complex RNA structures
用于复杂 RNA 结构的下一代计算/化学方法
- 批准号:
9765345 - 财政年份:2017
- 资助金额:
$ 29.83万 - 项目类别:
Next-generation computational/chemical methods for complex RNA structures
用于复杂 RNA 结构的下一代计算/化学方法
- 批准号:
10393151 - 财政年份:2017
- 资助金额:
$ 29.83万 - 项目类别:
Modeling and design of complex RNA structures
复杂 RNA 结构的建模和设计
- 批准号:
10405315 - 财政年份:2017
- 资助金额:
$ 29.83万 - 项目类别:
Next-generation computational/chemical methods for complex RNA structures
用于复杂 RNA 结构的下一代计算/化学方法
- 批准号:
9277079 - 财政年份:2017
- 资助金额:
$ 29.83万 - 项目类别:
Next-generation computational/chemical methods for complex RNA structures
用于复杂 RNA 结构的下一代计算/化学方法
- 批准号:
10220066 - 财政年份:2017
- 资助金额:
$ 29.83万 - 项目类别:
Non-coding RNA Structure through a Mutate-and-Map Strategy
通过突变和映射策略研究非编码 RNA 结构
- 批准号:
8899593 - 财政年份:2012
- 资助金额:
$ 29.83万 - 项目类别:
Internet-scale discovery of RNA bioengineering rules
互联网规模发现RNA生物工程规则
- 批准号:
8274073 - 财政年份:2012
- 资助金额:
$ 29.83万 - 项目类别:
Correcting Pervasive Errors in RNA Crystallography with Rosetta
使用 Rosetta 纠正 RNA 晶体学中普遍存在的错误
- 批准号:
8355778 - 财政年份:2012
- 资助金额:
$ 29.83万 - 项目类别:
Internet-scale discovery of RNA bioengineering rules
互联网规模发现RNA生物工程规则
- 批准号:
8668102 - 财政年份:2012
- 资助金额:
$ 29.83万 - 项目类别:
相似国自然基金
基于ADK/Adenosine调控DNA甲基化探讨“利湿化瘀通络”法对2型糖尿病肾病足细胞裂孔膜损伤的干预机制研究
- 批准号:82074359
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
- 批准号:81570244
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
- 批准号:81171113
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting the A2B Adenosine Receptor for Immunoprevention of Pancreatic Cancer
靶向 A2B 腺苷受体用于胰腺癌的免疫预防
- 批准号:
10929664 - 财政年份:2023
- 资助金额:
$ 29.83万 - 项目类别:
Exploring the role of adenosine A2A receptors in Schizophrenia using opto-pharmacologically controlled allosteric modulation.
利用光药理学控制的变构调节探索腺苷 A2A 受体在精神分裂症中的作用。
- 批准号:
23K14685 - 财政年份:2023
- 资助金额:
$ 29.83万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
- 批准号:
10679989 - 财政年份:2023
- 资助金额:
$ 29.83万 - 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W016974/1 - 财政年份:2023
- 资助金额:
$ 29.83万 - 项目类别:
Research Grant
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
- 批准号:
23K07566 - 财政年份:2023
- 资助金额:
$ 29.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
- 批准号:
10760676 - 财政年份:2023
- 资助金额:
$ 29.83万 - 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
$ 29.83万 - 项目类别:
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
- 批准号:
2319114 - 财政年份:2023
- 资助金额:
$ 29.83万 - 项目类别:
Standard Grant
The Biology of Microglia: Adenosine A3 Receptor Suppression
小胶质细胞的生物学:腺苷 A3 受体抑制
- 批准号:
RGPIN-2019-06289 - 财政年份:2022
- 资助金额:
$ 29.83万 - 项目类别:
Discovery Grants Program - Individual
Postnatal development of adenosine kinase in the brainstem network that controls breathing
控制呼吸的脑干网络中腺苷激酶的出生后发育
- 批准号:
573323-2022 - 财政年份:2022
- 资助金额:
$ 29.83万 - 项目类别:
University Undergraduate Student Research Awards














{{item.name}}会员




