Correcting Pervasive Errors in RNA Crystallography with Rosetta

使用 Rosetta 纠正 RNA 晶体学中普遍存在的错误

基本信息

  • 批准号:
    8355778
  • 负责人:
  • 金额:
    $ 11.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-30 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The continuing discoveries of non-coding RNAs and their critical roles in cellular and viral machinery are inspiring novel antibacterial, antitumor, nd antiviral therapies based on disrupting or manipulating the RNAs involved. Most of RNA's biological functions depend on the formation of intricate 3D structure and binding to ligands and proteins. Unfortunately, crystallographic models, our richest sources of RNA structural information, contain pervasive errors due to ambiguities in manually fitting RNA backbones into experimental density maps. We have recently brought Rosetta high- resolution RNA structure prediction together with PHENIX diffraction-based refinement and MolProbity validation, to create Enumerative Real-space Refinement ASsisted by Electron density under Rosetta. The ERRASER method corrects the majority of identifiable sugar pucker errors, steric clashes, suspicious backbone rotamers, and incorrect bond lengths/angles in a benchmark of RNA data sets, including a ribosomal subunit. Furthermore, the method, on average, improves Rfree factors to rigorously set- aside data. In this exploratory grant, we first aim to expand ERRASER to resolve ambiguities at RNA/ligand, RNA/protein, and RNA crystal contacts, as will be necessary for correcting RNA enzyme active sites, ligand binding sites, and ribonucleoprotein machines. Second, we aim to make ERRASER available as a fully automated server that will both refine all extant PDB-deposited RNA and ribonucleoprotein models and enable crystallographers to rapidly correct errors in their future data sets. By rapidly and systematicall disambiguating RNA model fitting, ERRASER will enable RNA crystallography with significantly fewer errors. PUBLIC HEALTH RELEVANCE: RNA molecules play fundamental roles in transmitting and regulating genetic information in all living systems, including disease-causing bacteria, retroviruses like HIV, and tumor cells. New potentially life-saving therapies that target these RNAs are being hindered by our imperfect understanding of how RNAs fold into intricate 3D structures. Our work aims to develop a new tool that corrects pervasive mistakes in RNA crystallographic models, which are our richest sources of 3D information.
描述(由申请人提供):非编码RNA及其在细胞和病毒机制中的关键作用的不断发现正在激发基于破坏或操纵相关RNA的新型抗菌、抗肿瘤和抗病毒疗法。RNA的大部分生物学功能取决于复杂的3D结构的形成以及与配体和蛋白质的结合。不幸的是,结晶学模型,我们最丰富的RNA结构信息的来源,包含普遍的错误,由于在手动拟合RNA骨架到实验密度图的模糊性。我们最近将Rosetta高分辨率RNA结构预测与基于PHENIX衍射的细化和MolProbity验证结合在一起,以在Rosetta下创建由电子密度辅助的枚举实空间细化。ERRASER方法纠正了RNA数据集(包括核糖体亚基)基准中大多数可识别的糖皱褶错误、空间冲突、可疑的骨架旋转异构体和不正确的键长/角度。此外,平均而言,该方法改进了Rfree因子以严格地留出数据。在这项探索性资助中,我们首先旨在扩展ERRASER以解决RNA/配体,RNA/蛋白质和RNA晶体接触的模糊性,这对于纠正RNA酶活性位点,配体结合位点和核糖核蛋白机器是必要的。其次,我们的目标是使ERRASER作为一个全自动化的服务器,既可以完善所有现存的PDB沉积的RNA和核糖核蛋白模型,使晶体学家能够快速纠正他们未来数据集的错误。通过快速和系统地消除RNA模型拟合的歧义,ERRASER将使RNA晶体学具有显著更少的错误。 公共卫生相关性:RNA分子在传递和调节所有生命系统中的遗传信息方面发挥着重要作用,包括致病细菌、逆转录病毒(如HIV)和肿瘤细胞。针对这些RNA的新的潜在拯救生命的疗法受到我们对RNA如何折叠成复杂的3D结构的不完善理解的阻碍。我们的工作旨在开发一种新的工具,纠正RNA晶体学模型中普遍存在的错误,这是我们最丰富的3D信息来源。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rhiju Das其他文献

Rhiju Das的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rhiju Das', 18)}}的其他基金

Modeling and design of complex RNA structures
复杂 RNA 结构的建模和设计
  • 批准号:
    10685534
  • 财政年份:
    2017
  • 资助金额:
    $ 11.48万
  • 项目类别:
Next-generation computational/chemical methods for complex RNA structures
用于复杂 RNA 结构的下一代计算/化学方法
  • 批准号:
    9765345
  • 财政年份:
    2017
  • 资助金额:
    $ 11.48万
  • 项目类别:
Next-generation computational/chemical methods for complex RNA structures
用于复杂 RNA 结构的下一代计算/化学方法
  • 批准号:
    10393151
  • 财政年份:
    2017
  • 资助金额:
    $ 11.48万
  • 项目类别:
Modeling and design of complex RNA structures
复杂 RNA 结构的建模和设计
  • 批准号:
    10405315
  • 财政年份:
    2017
  • 资助金额:
    $ 11.48万
  • 项目类别:
Next-generation computational/chemical methods for complex RNA structures
用于复杂 RNA 结构的下一代计算/化学方法
  • 批准号:
    10220066
  • 财政年份:
    2017
  • 资助金额:
    $ 11.48万
  • 项目类别:
Next-generation computational/chemical methods for complex RNA structures
用于复杂 RNA 结构的下一代计算/化学方法
  • 批准号:
    9277079
  • 财政年份:
    2017
  • 资助金额:
    $ 11.48万
  • 项目类别:
Non-coding RNA Structure through a Mutate-and-Map Strategy
通过突变和映射策略研究非编码 RNA 结构
  • 批准号:
    8899593
  • 财政年份:
    2012
  • 资助金额:
    $ 11.48万
  • 项目类别:
Internet-scale discovery of RNA bioengineering rules
互联网规模发现RNA生物工程规则
  • 批准号:
    8274073
  • 财政年份:
    2012
  • 资助金额:
    $ 11.48万
  • 项目类别:
Non-coding RNA Structure through a Mutate-and-Map Strategy
通过突变和映射策略研究非编码 RNA 结构
  • 批准号:
    8345532
  • 财政年份:
    2012
  • 资助金额:
    $ 11.48万
  • 项目类别:
Internet-scale discovery of RNA bioengineering rules
互联网规模发现RNA生物工程规则
  • 批准号:
    8668102
  • 财政年份:
    2012
  • 资助金额:
    $ 11.48万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 11.48万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了