Biomolecular Recognition and Binding Mechanisms
生物分子识别和结合机制
基本信息
- 批准号:8349005
- 负责人:
- 金额:$ 51.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AccountingAddressAdverse effectsAllosteric SiteAttentionBehaviorBindingBinding SitesBiochemicalBiological ModelsBiologyBiophysicsCapsidCell physiologyCellsChemicalsCommunicationComplexComputer SimulationConsensusDNADataDiseaseDrug DesignElectrostaticsElementsEnhancersEnzymesEquilibriumEquus caballusEventGenomeGenomicsHeartHydrogen BondingImmune responseIndividualInterferon-betaKnowledgeLeadLengthLifeLigaseLipidsMapsMediatingMembraneModelingMolecularMolecular ConformationMolecular MotorsPathway interactionsPlayPopulationPropertyProteinsRNARegulationRelative (related person)ResolutionResponse ElementsRoleShapesSignal TransductionSiteSourceSpecificityStructureSumSystemSystems BiologyTechniquesTimeTransport ReactionUbiquitinViralWorkbiological researchcombinatorialdatabase structuredrug discoveryflexibilityfunctional genomicsgraspimprovedinsightintermolecular interactionmolecular assembly/self assemblymolecular dynamicsnew technologypeptide hormoneprotein functionprotein protein interactionresponsesmall moleculestructural biologytooltranscription factorubiquitin-protein ligase
项目摘要
Our approaches to understand protein interactions across the cell focus on uncovering, modeling and quantitating the general principles governing the micro and macro universe. This has always been an important component of biological research, however recent advances in experimental techniques and the accumulation of unprecedented genome-scale experimental data produced by these novel technologies now allow for addressing fundamental questions on a large scale. These relate to molecular interactions, principles of bimolecular recognition, and mechanisms of signal propagation. The functioning of a cell requires a variety of intermolecular interactions including proteinprotein, proteinDNA, proteinRNA, hormones, peptides, small molecules, lipids and more. Biomolecules work together to provide specific functions and perturbations in intermolecular communication channels often lead to cellular malfunction and disease. A full understanding of the interactome requires an in-depth grasp of the biophysical principles underlying individual interactions as well as their organization in cellular networks. Phenomena can be described at different levels of abstraction. Computational and systems biology strive to model cellular processes by integrating and analyzing complex data from multiple experimental sources using interdisciplinary tools. As a result, both the causal relationships between the variables and the general features of the system can be discovered, which even without knowing the details of the underlying mechanisms allow for putting forth hypotheses and predicting the behavior of the systems in response to perturbation. And here lies the strength of in silico models which provide control and predictive power. At the same time, the complexity of individual elements and molecules can be addressed by the fields of molecular biophysics, physical biology and structural biology, which focus on the underlying physico-chemical principles and may explain the molecular mechanisms of cellular function. Within this framework, we have addressed the question of what is the mechanism through which transcription factors (TFs) assemble specifically along the enhancer DNA? The IFN-beta enhanceosome provides a good model system: it is small; its components' crystal structures are available; and there are biochemical and cellular data. In the IFN-beta enhanceosome, there are few protein-protein interactions even though consecutive DNA response elements (REs) overlap. Our molecular dynamics (MD) simulations on different motif combinations from the enhanceosome illustrate that cooperativity is achieved via unique organization of the REs: specific binding of one TF can enhance the binding of another TF to a neighboring RE and restrict others, through overlap of REs; the order of the REs can determine which complexes will form; and the alternation of consensus and non-consensus REs can regulate binding specificity by optimizing the interactions among partners. Our observations offer an explanation of how specificity and cooperativity can be attained despite the limited interactions between neighboring TFs on the enhancer DNA. To date, when addressing selective TF binding, attention has largely focused on RE sequences. Yet, the order of the REs on the DNA and the length of the spacers between them can be a key factor in specific combinatorial assembly of the TFs on the enhancer and thus in function. Our results emphasize cooperativity via RE binding sites organization. On another venue, sumoylation is the covalent attachment of small ubiquitin-like modifier (SUMO) to a target protein. Similar to other ubiquitin-like pathways, three enzyme types are involved that act in succession: an activating enzyme (E1), a conjugating enzyme (E2), and a ligase (E3). To date, unlike other ubiquitin-like mechanisms, sumoylation of the target RanGAP1 (Target(RanGAP1)) does not absolutely require the E3 of the system, RanBP2 (E3(RanBP2)), since the presence of E2 (E2(Ubc9)) is enough to sumoylate Target(RanGAP1). However, in the presence of E3, sumoylation is more efficient. To understand the role of the target specificity of E3(RanBP2) and E2(Ubc9), we carried out molecular dynamics simulations for the structure of E2(Ubc9)-SUMO-Target(RanGAP1) with and without the E3(RanBP2) ligase. Analysis of the dynamics of E2(Ubc9)-SUMO-Target(RanGAP1) in the absence and presence of E3(RanBP2) revealed that two different allosteric sites regulate the ligase activity: (i) in the presence of E3(RanBP2), the E2(Ubc9)'s loop 2; (ii) in the absence of E3(RanBP2), the Leu65-Arg70 region of SUMO. These results provide a first insight into the question of how E3(RanBP2) can act as an intrinsic E3 for E2(Ubc9) and why, in its absence, the activity of E2(Ubc9)-SUMO-Target(RanGAP1) could still be maintained, albeit at lower efficiency. Proteins can exist in a large number of conformations around their native states that can be characterized by an energy landscape. The landscape illustrates individual valleys, which are the conformational substates. From the functional standpoint, there are two key points: first, all functionally relevant substates pre-exist; and second, the landscape is dynamic and the relative populations of the substates will change following allosteric events. Allosteric events perturb the structure, and the energetic strain propagates and shifts the population. This can lead to changes in the shapes and properties of target binding sites. We presented an overview of dynamic conformational ensembles focusing on allosteric events in signaling, and proposed that combining equilibrium fluctuation concepts with genomic screens could help drug discovery.
我们的方法来了解蛋白质在整个细胞的相互作用集中在揭示,建模和量化的一般原则,管理微观和宏观宇宙。这一直是生物学研究的一个重要组成部分,然而,实验技术的最新进展和这些新技术产生的前所未有的基因组规模实验数据的积累现在允许大规模地解决基本问题。这些涉及分子相互作用、双分子识别原理和信号传播机制。细胞的功能需要各种分子间的相互作用,包括蛋白质、蛋白质DNA、蛋白质RNA、激素、肽、小分子、脂质等。生物分子协同工作以提供特定的功能,而分子间通讯通道的扰动通常会导致细胞功能障碍和疾病。对相互作用组的充分理解需要深入掌握个体相互作用及其在细胞网络中的组织的生物物理原理。现象可以在不同的抽象层次上描述。计算和系统生物学致力于通过使用跨学科工具整合和分析来自多个实验来源的复杂数据来模拟细胞过程。因此,可以发现变量之间的因果关系和系统的一般特征,即使不知道潜在机制的细节,也可以提出假设并预测系统响应扰动的行为。这就是提供控制和预测能力的计算机模型的优势。与此同时,单个元素和分子的复杂性可以通过分子生物物理学、物理生物学和结构生物学领域来解决,这些领域侧重于基本的物理化学原理,并可以解释细胞功能的分子机制。 在这个框架内,我们已经解决的问题是什么机制,通过转录因子(TF)组装特异性沿着增强子DNA?IFN-β增强体提供了一个很好的模型系统:它很小;其组分的晶体结构是可用的;并且有生物化学和细胞数据。在IFN-β增强体中,即使连续的DNA反应元件(RE)重叠,也很少有蛋白质-蛋白质相互作用。我们对增强体不同基序组合的分子动力学(MD)模拟表明,协同性是通过RE的独特组织实现的:一个TF的特异性结合可以通过RE的重叠来增强另一个TF与相邻RE的结合并限制其他TF; RE的顺序可以决定哪些复合物将形成;共有和非共有RE的交替可以通过优化配偶体之间的相互作用来调节结合特异性。我们的观察结果提供了一个解释,尽管增强子DNA上相邻TF之间的相互作用有限,但特异性和协同性是如何实现的。迄今为止,当解决选择性TF结合时,注意力主要集中在RE序列上。然而,RE在DNA上的顺序和它们之间的间隔区的长度可能是TF在增强子上的特异性组合组装的关键因素,因此在功能上。我们的研究结果强调通过RE结合位点组织的协同性。在另一个场合,SUMO化是小泛素样修饰物(SUMO)与靶蛋白的共价连接。与其他泛素样途径类似,三种酶类型依次起作用:激活酶(E1),缀合酶(E2)和连接酶(E3)。迄今为止,与其他泛素样机制不同,靶RanGAP 1(Target(RanGAP 1))的类小泛素化并不绝对需要系统的E3 RanBP 2(E3(RanBP 2)),因为E2(E2(Ubc 9))的存在足以使靶(RanGAP 1)类小泛素化。然而,在E3的存在下,sumoylation更有效。为了理解E3(RanBP 2)和E2(Ubc 9)的靶特异性的作用,我们对具有和不具有E3(RanBP 2)连接酶的E2(Ubc 9)-SUMO-靶标(RanGAP 1)的结构进行了分子动力学模拟。在不存在和存在E3(RanBP 2)的情况下E2(Ubc 9)-SUMO-靶标(RanGAP 1)的动力学分析揭示了两个不同的变构位点调节连接酶活性:(i)在存在E3(RanBP 2)的情况下,E2(Ubc 9)的环2;(ii)在不存在E3(RanBP 2)的情况下,SUMO的Leu 65-Arg 70区域。这些结果提供了对E3(RanBP 2)如何可以作为E2(Ubc 9)的内在E3以及为什么在其不存在的情况下,E2(Ubc 9)-SUMO-靶标(RanGAP 1)的活性仍然可以保持的问题的第一次洞察,尽管效率较低。蛋白质可以以其天然状态周围的大量构象存在,这些构象可以通过能量景观来表征。这幅图描绘了各个山谷,它们是构象亚态。从功能的角度来看,有两个关键点:第一,所有功能相关的子状态预先存在;第二,景观是动态的,子状态的相对种群将随着变构事件而改变。变构事件扰乱了结构,能量应变传播并改变了布居。这可导致靶结合位点的形状和性质的变化。我们提出了一个概述的动态构象合奏侧重于变构事件的信号,并提出了平衡波动的概念与基因组筛选相结合,可以帮助药物发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruth Nussinov其他文献
Ruth Nussinov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruth Nussinov', 18)}}的其他基金
Method Development: Efficient Computer Vision Based Algo
方法开发:基于高效计算机视觉的算法
- 批准号:
7291814 - 财政年份:
- 资助金额:
$ 51.4万 - 项目类别:
Method Development: Efficient Computer Vision Based Algorithms
方法开发:基于高效计算机视觉的算法
- 批准号:
7965320 - 财政年份:
- 资助金额:
$ 51.4万 - 项目类别:
Method Development: Efficient Computer Vision Based Algorithms
方法开发:基于高效计算机视觉的算法
- 批准号:
8937737 - 财政年份:
- 资助金额:
$ 51.4万 - 项目类别:
Method Development: Efficient Computer Vision Based Algorithms
方法开发:基于高效计算机视觉的算法
- 批准号:
8349006 - 财政年份:
- 资助金额:
$ 51.4万 - 项目类别:
Protein Structure, Stability, and Amyloid Formation
蛋白质结构、稳定性和淀粉样蛋白形成
- 批准号:
8349004 - 财政年份:
- 资助金额:
$ 51.4万 - 项目类别:
Protein Structure, Stability, and Amyloid Formation
蛋白质结构、稳定性和淀粉样蛋白形成
- 批准号:
8552693 - 财政年份:
- 资助金额:
$ 51.4万 - 项目类别:
Method Development: Efficient Computer Vision Based Algorithms
方法开发:基于高效计算机视觉的算法
- 批准号:
10262089 - 财政年份:
- 资助金额:
$ 51.4万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 51.4万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 51.4万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 51.4万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 51.4万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 51.4万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 51.4万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 51.4万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 51.4万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 51.4万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 51.4万 - 项目类别:
Research Grant