Tumor Stroma Interactions: Wound Promoted Tumor Growth

肿瘤间质相互作用:伤口促进肿瘤生长

基本信息

项目摘要

The mechanisms of wound promoted tumorigenesis and tumor progression are not fully understood. In particular, the impact of an acute wound such as might occur during biopsy or explorative surgery on an existing tumor has not been addressed. Perhaps the greatest risk is the presence of unsuspected micro deposits of tumor left behind after tumor resection. Animal models to date have described the influence of preexisting wounds on tumor cells, or the influence of wounding on initiated hosts. For example, tumor incidence and tumor volume are higher if melanoma or fibrosarcoma cells are injected into a wound as compared to unwounded tissue, indicating that a preexisting wound microenvironment facilitates the establishment of tumors from a tumor cell inoculate. Likewise, the coinjection of wound fluid and melanoma cells resulted in increased tumor volumes. It has also been shown that full thickness transcutaneous wounding is a sufficient event for tumor expression and growth in both Rous-sarcoma virus infected chickens and v-ras transgenic mice. This demonstrates that wounding can promote tumorigenesis in a host that is already initiated by viral infection or by oncogene expression. In the Rous sarcoma chicken model TGF-beta, a pleiotropic cytokine, has been implicated as a molecular mechanism of wound initiated tumorigenesis. These reports suggest a strong similarity as well as interaction between the wound microenvironment and the tumor microenvironment, and that this interaction can accelerate tumorigenesis and tumor progression in an unfavorable way for the host. Clinically, surgical procedures are typically performed in the proximity of a pre-existing tumor as a necessary component of tumor treatment. While these procedures attempt to eradicate the tumor for the benefit of the patient, local tumor recurrence and implantation of tumor cells along the wound or the needle tract have been described. Although this is often attributed to mechanical tumor spread, the local wound environment itself may similarly influence any residual tumor cells in a negative way. Understanding the mechanisms involved in wound-tumor interactions will help to identify therapeutic targets to prevent a negative impact of such procedures on tumor patients. In order to understand the role of the immune system in wound promoted tumor growth we have begun to study how wounding influences tumor growth in immunocompromised animals. Using athymic BALB/c nu/nu mice we found that wounding does not significantly accelerate tumor growth, indicating that wound promoted tumor growth is mediated by T-cells. We furthermore could show that wound fluid not only increased proliferation rates in vitro, but also accelerated tumor growth in vivo when 4T1 cells were treated with wound fluid generated from BALB/c mice before injection into animals, or when wound fluid was injected in the proximity of the tumor site; wound fluid generated in BALB/c nu/nu animals had no significant effect on tumor cell proliferation or tumor growth. These data indicate that wound promoted tumor growth is relayed by a soluble factor secreted by T-lymphocytes. We currently aim to clarify the role of different T-cell subsets in our model, and started CD8 depletion experiments in collaboration with Lalage Wakefield. If applicable, we will use a similar approach to investigate other T-cell subsets such as CD4 cells by depletion. In parallel, we will harvest tumor tissue at different time points after wounding and analyze the influx of T-cell subsets into the tumor / wound microenvironment using immunohisochemistry and FACS analysis. Since we already demonstrated that wound fluid effects proliferation of tumor cells in vivo and tumor growth in vitro, we will analyze the cytokine expression pattern of wound fluid generated from BALB/c, BALB/c nu/nu mice, mouse plasma and mouse serum using antibody microarrays (Raybiotech); protein expression patterns will be analyzed by 2D-electrophoresis and subsequent mass-spectometry, and protein microarrays will be employed if applicable. Based on these approaches and the current literature, we will establish a shortlist of candidate cytokines or proteins that mediate wound promoted tumor growth. Alternatively, we will start fractionating wound fluid and investigate the effect of these fractions on tumor cells and stromal cells such as fibroblasts or endothelial cells in order to identify new effector molecules. Furthermore TGF-beta has been implicated in wound triggered tumorigenesis in Rous sarcoma virus infected chickens. TGF-beta's has a complex role in tumorigenesis and metastases, and its influence on different cells types depends on the cell type and the signaling context. For example, TGF-beta can stimulate matrix secretion by stromal cells and angiogenesis, and modulates immune function, all of which are altered during tumorigenesis as well as during wound healing. Using a Smad3 knockout model we could show that defect stromal TGF-beta signaling yields smaller tumors in the 4T1 model, and that tumors from Smad3 knockout animals have less CD31 positive vessels. We bred the Smad3 knockout into the BALB/c background to analyze the effect of defective stromal TGF-beta signaling on wound promoted tumor growth. Using this model, we were able to identify several candidate proteins involved in wound promoted tumor growth. In particular, we demonstrated that pretreatment of cells with SDF-1 increased tumor growth while the inhibition of SDF-1 and/or its receptor CXCR4 decreased tumor growth. It was also demonstrated that the inhibition of SDF-1/CXCR4 signaling in vivo reduces the effect of wounds on tumors. We now plan to identify the origin of SDF-1 in wounds/tumors, investigate the role of SDF-1 in wounded promoted tumor growth and to identify the target cell of SDF-1. In addition, we will follow up on the role of T-lymphocytes in wound promoted tumor growth by identifying subsets of T-lymphocytes in wounds and identifying which subset of T-lymphocytes relays wound promoted tumor growth.
伤口促进肿瘤发生和肿瘤进展的机制尚不完全清楚。特别是,诸如在活检或探查手术期间可能发生的急性伤口对现有肿瘤的影响尚未得到解决。也许最大的风险是肿瘤切除后留下的未预料到的肿瘤微沉积物的存在。迄今为止的动物模型已经描述了先前存在的伤口对肿瘤细胞的影响,或伤口对起始宿主的影响。例如,如果将黑色素瘤或纤维肉瘤细胞注射到伤口中,与未受伤的组织相比,肿瘤发生率和肿瘤体积会更高,这表明预先存在的伤口微环境有利于肿瘤细胞接种后形成肿瘤。同样,伤口液和黑色素瘤细胞的共注射导致肿瘤体积增加。还表明,全层经皮损伤对于感染劳斯肉瘤病毒的鸡和v-ras转基因小鼠中的肿瘤表达和生长来说是充分的事件。这表明受伤可以促进宿主体内的肿瘤发生,而该肿瘤发生已经由病毒感染或癌基因表达引发。在劳斯肉瘤鸡模型中,TGF-β(一种多效细胞因子)被认为是伤口引发肿瘤发生的分子机制。这些报告表明伤口微环境和肿瘤微环境之间存在很强的相似性和相互作用,并且这种相互作用可以以对宿主不利的方式加速肿瘤发生和肿瘤进展。临床上,外科手术通常在已存在的肿瘤附近进行,作为肿瘤治疗的必要组成部分。虽然这些手术试图为了患者的利益而根除肿瘤,但已经描述了局部肿瘤复发和肿瘤细胞沿着伤口或针道植入。尽管这通常归因于机械性肿瘤扩散,但局部伤口环境本身也可能同样以负面方式影响任何残留的肿瘤细胞。了解伤口与肿瘤相互作用的机制将有助于确定治疗靶点,以防止此类手术对肿瘤患者产生负面影响。 为了了解免疫系统在伤口促进肿瘤生长中的作用,我们开始研究伤口如何影响免疫功能低下动物的肿瘤生长。使用无胸腺 BALB/c nu/nu 小鼠,我们发现受伤不会显着加速肿瘤生长,表明伤口促进肿瘤生长是由 T 细胞介导的。此外,我们还发现,当 4T1 细胞在注射到动物体内之前用 BALB/c 小鼠产生的伤口液处理时,或者当伤口液注射到肿瘤部位附近时,伤口液不仅会增加体外增殖率,而且会加速体内肿瘤的生长; BALB/c nu/nu 动物中产生的伤口液对肿瘤细胞增殖或肿瘤生长没有显着影响。这些数据表明伤口促进的肿瘤生长是由 T 淋巴细胞分泌的可溶性因子传递的。我们目前的目标是阐明不同 T 细胞亚群在我们的模型中的作用,并与 Lalage Wakefield 合作启动了 CD8 耗竭实验。如果适用,我们将使用类似的方法通过耗竭研究其他 T 细胞亚群,例如 CD4 细胞。同时,我们将在受伤后的不同时间点收获肿瘤组织,并使用免疫组织化学和 FACS 分析分析 T 细胞亚群流入肿瘤/伤口微环境的情况。由于我们已经证明伤口液会影响体内肿瘤细胞的增殖和体外肿瘤的生长,因此我们将使用抗体微阵列(Raybiotech)分析BALB/c、BALB/c nu/nu小鼠、小鼠血浆和小鼠血清产生的伤口液的细胞因子表达模式;将通过二维电泳和随后的质谱分析蛋白质表达模式,并且如果适用的话将采用蛋白质微阵列。基于这些方法和当前的文献,我们将建立介导伤口促进肿瘤生长的候选细胞因子或蛋白质的候选名单。或者,我们将开始分离伤口液体并研究这些组分对肿瘤细胞和基质细胞(例如成纤维细胞或内皮细胞)的影响,以便识别新的效应分子。 此外,TGF-β 与劳斯肉瘤病毒感染鸡的伤口引发的肿瘤发生有关。 TGF-β 在肿瘤发生和转移中发挥着复杂的作用,其对不同细胞类型的影响取决于细胞类型和信号传导背景。例如,TGF-β可以刺激基质细胞的基质分泌和血管生成,并调节免疫功能,所有这些在肿瘤发生和伤口愈合过程中都会发生改变。使用 Smad3 敲除模型,我们可以证明有缺陷的基质 TGF-β 信号传导在 4T1 模型中产生较小的肿瘤,并且来自 Smad3 敲除动物的肿瘤具有较少的 CD31 阳性血管。我们将 Smad3 敲除基因培育到 BALB/c 背景中,以分析有缺陷的基质 TGF-β 信号传导对伤口促进肿瘤生长的影响。使用这个模型,我们能够识别出几种参与伤口促进肿瘤生长的候选蛋白质。特别是,我们证明用 SDF-1 预处理细胞会增加肿瘤生长,而抑制 SDF-1 和/或其受体 CXCR4 会减少肿瘤生长。研究还表明,体内抑制 SDF-1/CXCR4 信号传导可减少伤口对肿瘤的影响。 我们现在计划鉴定SDF-1在伤口/肿瘤中的起源,研究SDF-1在伤口促进肿瘤生长中的作用,并鉴定SDF-1的靶细胞。此外,我们将通过鉴定伤口中的T淋巴细胞亚群并确定哪些T淋巴细胞亚群中继伤口促进肿瘤生长,来跟踪T淋巴细胞在伤口促进肿瘤生长中的作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Niederhuber其他文献

John Niederhuber的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Niederhuber', 18)}}的其他基金

Regulation of Hypoxia-Inducible Factors in Pluripotent Cancer Cells.
多能癌细胞中缺氧诱导因子的调节。
  • 批准号:
    7592962
  • 财政年份:
  • 资助金额:
    $ 29.84万
  • 项目类别:
Tumor Stroma Interactions: Wound Promoted Tumor Growth
肿瘤间质相互作用:伤口促进肿瘤生长
  • 批准号:
    8157533
  • 财政年份:
  • 资助金额:
    $ 29.84万
  • 项目类别:
Mechanisms of Stromal Cell Activation by the Developing Tumor
发育中的肿瘤激活基质细胞的机制
  • 批准号:
    7965690
  • 财政年份:
  • 资助金额:
    $ 29.84万
  • 项目类别:
Role of normal cervical stem cells in the HPV induced initiation of cervical can
正常宫颈干细胞在HPV诱导的宫颈癌发生中的作用
  • 批准号:
    7592964
  • 财政年份:
  • 资助金额:
    $ 29.84万
  • 项目类别:
Differentiation of tissue- and devlopment of tumor stem cells
组织分化和肿瘤干细胞的发育
  • 批准号:
    8349169
  • 财政年份:
  • 资助金额:
    $ 29.84万
  • 项目类别:
Regulation of Hypoxia-Inducible Factors in Pluripotent Cancer Cells.
多能癌细胞中缺氧诱导因子的调节。
  • 批准号:
    8349179
  • 财政年份:
  • 资助金额:
    $ 29.84万
  • 项目类别:
Tumor Stroma Interactions: Wound Promoted Tumor Growth
肿瘤间质相互作用:伤口促进肿瘤生长
  • 批准号:
    7965841
  • 财政年份:
  • 资助金额:
    $ 29.84万
  • 项目类别:
Mechanisms of Stromal Cell Activation by the Developing Tumor
发育中的肿瘤激活基质细胞的机制
  • 批准号:
    8349170
  • 财政年份:
  • 资助金额:
    $ 29.84万
  • 项目类别:
Role of normal cervical stem cells in HPV induced initiation of cervical cancer
正常宫颈干细胞在HPV诱导的宫颈癌发生中的作用
  • 批准号:
    8349181
  • 财政年份:
  • 资助金额:
    $ 29.84万
  • 项目类别:
NCI-Frederick Support and Technical Services
NCI-弗雷德里克支持和技术服务
  • 批准号:
    7970055
  • 财政年份:
  • 资助金额:
    $ 29.84万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.84万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了