Integrative And Molecular Studies Of Pain And Pain Control

疼痛和疼痛控制的综合和分子研究

基本信息

项目摘要

Summary: Overview: This research program addresses basic molecular and physiological processes of nociceptive (pain-sensing) transmission in the central and peripheral nervous systems and new ways to effectively control pain. The molecular research is performed using animal and in vitro, cell-based models. We concentrate on primary afferent pain-sensing neurons located in dorsal root ganglion (DRG) that innervate the skin and deep tissues and their connections in the dorsal spinal cord, which is the first site of synaptic information processing for pain. Our research has identified the DRG and spinal cord as loci of neuronal plasticity and altered gene expression in persistent pain states. The mechanisms of transduction of physical pain stimuli are investigated through examination of events and molecules in damaged or inflamed peripheral tissue, in primary cultures or using reductionist preparations such as heterologous expression systems in cultured cells. Our goals are (1) to understand the molecular and cell biological mechanisms of acute and chronic pain at the initial steps in the pain pathway, (2) to investigate mechanisms underlying human chronic pain disorders, and (3) to use this knowledge to devise new treatments for pain. New Treatments for Pain: We address the new treatment goal by a translational research and human clinical trials program aimed at developing new analgesics and interventions for severe pain. The current approach, based on our studies of pain transduction through the vanilloid transient receptor potential ion channel (TRPV1), has resulted in a Phase I clinical trial of the TRPV1 agonist resiniferatoxin (RTX) as a new treatment for advanced cancer pain. RTX activates TRPV1, which is an inflammation and heat-sensitive calcium/sodium ion channel that normally converts painful heat or low pH into nerve action potentials by opening the pore of the ion channel. The influx of ions depolarizes pain-sensing nerve endings and triggers electrical impulses that are conducted to the spinal cord. RTX is a potent capsaicin analog that props open the TRPV1 ion channel, causing calcium cytotoxicity and death of TRPV1 pain-sensing neurons or their axonal projections or endings. RTX treatments produced very effective pain control in preclinical models by several routes of administration: into the cerebrospinal fluid around the spinal cord (intrathecal) or directly into the sensory dorsal root ganglion (DRG) (permanent effect) or into peripheral sites to expose nerve endings in skin, joints, cornea or axons in a peripheral nerve (temporary effect since the peripheral endings regenerate). To date, following approval of the clinical protocol and the Investigational New Drug application, we have treated 5 patients with severe pain from advanced cancer and went through one dose escalation. The aim of the Phase I study is to determine the safety of RTX upon administration into the spinal CSF (intrathecal). Our plan is to complete the Phase I study, generate new protocols for postherpetic neuralgia an other acute and chronic pain conditions such as osteoarthritis, head and neck cancer, post-amputation and neuropathic pain. Basic Pain Mechanisms: Underlying the translational studies are investigations of molecular regulation of gene expression, neuronal function, behavior, and mechanisms of pain transduction. We are systematically investigating the first three steps in the pain pathway beginning with injured peripheral tissue, the dorsal root ganglion and the dorsal (sensory) spinal cord. The goal of this approach is to obtain a comprehensive molecular understanding of nociceptive process. Our studies reveal a complex, dynamic modulation of gene expression at all three steps. We have identified prominent roles for new, key molecules with distinct combinatorial patterns of expression among the three tissues. We are now examining human DRG and spinal cord to determine if the same expression and enrichment occurs in human pain circuits. We established collaboration with the Neuropathology Section, NIMH and have collected over 100 human trigeminal ganglia and cervical spinal cord samples. These tissues are being used for transcriptome and protein analysis of human nociceptive circuits. We are in the process of establishing collaboration with Rush University to obtain postmortem DRG and spinal cord of patients with defined pain disorders; thus both baseline and pain-state-dependent changes can be investigated. Through this research we hope to obtain a fundamental understanding of the relationships between tissue damage, inflammation and pain sensation. In a broader framework, these studies explore the fundamental molecular basis of synaptic plasticity. We hypothesize modularity in neuronal responses when a new level of synaptic or pharmacological input occurs that will be relevant to pain, and to neurological disorders like epilepsy or drug abuse whereby "generic" alterations are combined with circuit-specific genes to meet the demands of new stimulation or activity. Understanding the molecular repertoire and its dynamic interactions will lead to a deeper understanding of mechanisms that trigger and sustain chronic pain and other disorders of the nervous system. In terms of behavioral studies, we have begun to dissect out the role of the lightly myelinated, rapidly conducting A-delta neuron using an infrared diode laser stimulator. These studies show that A-delta neurons are sensitized in inflammatory pain, similar to C-fibers, and have led to the hypothesis that they are mediators or triggers for breakthrough pain in osteoarthritis or cancer. We also have determined that the A-delta fibers are the most sensitive to RTX axotomy, possibly because the lesion occurs at multiple nodes of Ranvier that the cell cannot repair easily. We shall be examining this issue in more detail. Becauese the stimulus is so short this allows for detailed studies of sensory motor integration in the first few milliseconds after stimulation,before compensatory pain control processes can intervene. These types of fast transient stimuli are often the stimuli that trigger episodes of breakthrough pain. Early Translational Investigations: A final set of studies concerns the identification of small chemicals that act as positive allosteric modulators (PAMs) of TRPV1 activation by pH or vanilloid agonists. Our human cancer study showed that TRPV1 is one of the most important transducers of painful stimuli and understanding how the ion channel can be blocked, activated or sensitized is fundamental to understanding pain. We have identified a new action on TRPV1 via screening of small molecule libraries. We discovered compounds that enhance the activation of TRPV1 upon agonist binding to the orthosteric site or by elevated H+ ions. These studies suggest allosteric modulation of the TRPV1 ion channel open state that may be accessed for pain transmission as well as the existence of a new class of pharmacological agents for pain modulation and pain control. Over the past year we screened the 300,000 compound Molecular Probes library and identified over 100 direct agonists and over 900 PAMs. Clearly not all of these single-point determinations are correct and we are in the process of rescreening for validation. Secondary screens for specificity will use other TRP and ligand activated ion channels coupled with electrophysiological recordings and Ca-45 uptake. We hope to obtain new probes for TRPV1 functional studies and new leads for PAMs that can be used for pain control. These studies have progressed to the point where we are synthesizing analogs of the lead PAMs for evaluation.
摘要:概述:本研究项目旨在研究中枢和外周神经系统中痛觉(痛觉)传递的基本分子和生理过程,以及有效控制疼痛的新方法。分子研究是通过动物和体外细胞模型进行的。我们集中研究了位于支配皮肤和深层组织的背根神经节(DRG)内的初级传入痛觉神经元及其在脊髓背侧的连接,脊髓背侧是疼痛突触信息加工的第一个部位。我们的研究已经确定DRG和脊髓是持续疼痛状态下神经元可塑性和基因表达改变的位点。通过检查受损或发炎的外周组织中的事件和分子,在原代培养或使用还原制剂(如培养细胞中的异种表达系统)来研究物理疼痛刺激的转导机制。我们的目标是(1)了解急性和慢性疼痛在疼痛通路初始阶段的分子和细胞生物学机制,(2)研究人类慢性疼痛疾病的机制,(3)利用这些知识设计新的疼痛治疗方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael J. Iadarola其他文献

Thermosensory Loss is Correlated with Primary Afferent Nociceptive Fibers Deletion in Postmortem Dorsal Root Ganglion and Spinal Cord in a Cancer Patient Treated with Resiniferatoxin
热感觉丧失与接受树脂毒素治疗的癌症患者死后背根神经节和脊髓中初级传入伤害性纤维的缺失相关
  • DOI:
    10.1016/j.jpain.2024.01.145
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Gustavo Serrano-Berríos;Matthew R. Sapio;Pranavi Nara;Allison Manalo;Andre Ghetti;Michael J. Iadarola;Andrew J. Mannes
  • 通讯作者:
    Andrew J. Mannes
Targeting Peripheral and Central Sensitization of Morton’s Neuroma Pain
针对莫顿神经瘤疼痛的外周和中枢敏化
  • DOI:
    10.1016/j.jpain.2024.01.142
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Ellen S. Staedtler;Shruthi Satyanarayana;Eleni Frangos;Matthew R. Sapio;Misha Backonja;Michael J. Iadarola;Andrew J. Mannes
  • 通讯作者:
    Andrew J. Mannes
Characterization Of Distinct Nociceptive Populations In The Human Drg
人类背根神经节中不同伤害感受群体的特征描述
  • DOI:
    10.1016/j.jpain.2023.02.059
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Ellen S. Staedtler;Michael J. Iadarola;Matthew R. Sapio;Dragan Maric;André Ghetti;Andrew J. Mannes
  • 通讯作者:
    Andrew J. Mannes
Cholecystokinin turnover in brain
  • DOI:
    10.1016/0006-8993(83)90751-5
  • 发表时间:
    1983-10-16
  • 期刊:
  • 影响因子:
  • 作者:
    James L. Meek;Michael J. Iadarola;Osvaldo Giorgi
  • 通讯作者:
    Osvaldo Giorgi
Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities
生物标志物的发现与验证以辅助安全有效止痛疗法的开发:挑战与机遇
  • DOI:
    10.1038/s41582-020-0362-2
  • 发表时间:
    2020-06-15
  • 期刊:
  • 影响因子:
    33.100
  • 作者:
    Karen D. Davis;Nima Aghaeepour;Andrew H. Ahn;Martin S. Angst;David Borsook;Ashley Brenton;Michael E. Burczynski;Christopher Crean;Robert Edwards;Brice Gaudilliere;Georgene W. Hergenroeder;Michael J. Iadarola;Smriti Iyengar;Yunyun Jiang;Jiang-Ti Kong;Sean Mackey;Carl Y. Saab;Christine N. Sang;Joachim Scholz;Marta Segerdahl;Irene Tracey;Christin Veasley;Jing Wang;Tor D. Wager;Ajay D. Wasan;Mary Ann Pelleymounter
  • 通讯作者:
    Mary Ann Pelleymounter

Michael J. Iadarola的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael J. Iadarola', 18)}}的其他基金

Integrative And Molecular Studies Of Pain & Pain Control
疼痛的综合和分子研究
  • 批准号:
    6814532
  • 财政年份:
  • 资助金额:
    $ 96.16万
  • 项目类别:
Mechanisms of Pain and Immune Processes
疼痛和免疫过程的机制
  • 批准号:
    7967114
  • 财政年份:
  • 资助金额:
    $ 96.16万
  • 项目类别:
INTEGRATIVE AND MOLECULAR STUDIES OF PAIN AND PAIN CONTROL
疼痛和疼痛控制的综合分子研究
  • 批准号:
    6432046
  • 财政年份:
  • 资助金额:
    $ 96.16万
  • 项目类别:
Mechanisms of Pain and Immune Processes
疼痛和免疫过程的机制
  • 批准号:
    8553351
  • 财政年份:
  • 资助金额:
    $ 96.16万
  • 项目类别:
The Pain Neural Transcriptome
疼痛神经转录组
  • 批准号:
    8552558
  • 财政年份:
  • 资助金额:
    $ 96.16万
  • 项目类别:
Integrative/Molecular Studies Of Pain And Pain Control
疼痛和疼痛控制的综合/分子研究
  • 批准号:
    6531938
  • 财政年份:
  • 资助金额:
    $ 96.16万
  • 项目类别:
The Pain Neural Transcriptome
疼痛神经转录组
  • 批准号:
    8736696
  • 财政年份:
  • 资助金额:
    $ 96.16万
  • 项目类别:
Mechanisms of Pain and Immune Processes
疼痛和免疫过程的机制
  • 批准号:
    7733937
  • 财政年份:
  • 资助金额:
    $ 96.16万
  • 项目类别:
Integrative And Molecular Studies Of Pain And Pain Contr
疼痛和疼痛控制的综合和分子研究
  • 批准号:
    6966492
  • 财政年份:
  • 资助金额:
    $ 96.16万
  • 项目类别:
The Pain Neural Transcriptome
疼痛神经转录组
  • 批准号:
    8336411
  • 财政年份:
  • 资助金额:
    $ 96.16万
  • 项目类别:

相似海外基金

Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
  • 批准号:
    10603436
  • 财政年份:
    2023
  • 资助金额:
    $ 96.16万
  • 项目类别:
Clinical Outcome Assessments for Acute Pain Therapeutics in Infants and young Children (COA APTIC)
婴幼儿急性疼痛治疗的临床结果评估 (COA APTIC)
  • 批准号:
    10778757
  • 财政年份:
    2023
  • 资助金额:
    $ 96.16万
  • 项目类别:
Clinical Outcome Assessments for Acute Pain Therapeutics in Infants and young Children (COA APTIC)
婴幼儿急性疼痛治疗的临床结果评估 (COA APTIC)
  • 批准号:
    10783106
  • 财政年份:
    2023
  • 资助金额:
    $ 96.16万
  • 项目类别:
Development of A Focused Ultrasound Device for Noninvasive, Peripheral Nerve Blockade to Manage Acute Pain
开发用于非侵入性周围神经阻断来治疗急性疼痛的聚焦超声装置
  • 批准号:
    10740796
  • 财政年份:
    2023
  • 资助金额:
    $ 96.16万
  • 项目类别:
Predicting Pediatric Sickle Cell Disease Acute Pain Using Mathematical Models Based on mHealth Data
使用基于移动健康数据的数学模型预测儿童镰状细胞病急性疼痛
  • 批准号:
    10599401
  • 财政年份:
    2022
  • 资助金额:
    $ 96.16万
  • 项目类别:
Non-Contingent Acute Pain Stress Drives Analgesic Protection in Rats.
非偶然急性疼痛应激驱动大鼠镇痛保护。
  • 批准号:
    575854-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 96.16万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Prefrontal Cortex Hemodynamic Responses to Mindfulness Meditation and Acute Pain
前额皮质血流动力学对正念冥想和急性疼痛的反应
  • 批准号:
    467076
  • 财政年份:
    2021
  • 资助金额:
    $ 96.16万
  • 项目类别:
    Studentship Programs
A Multimodal Approach for Monitoring Prolonged Acute Pain in Neonates
监测新生儿长期急性疼痛的多模式方法
  • 批准号:
    9979265
  • 财政年份:
    2020
  • 资助金额:
    $ 96.16万
  • 项目类别:
Endocannabinoid Metabolism in Acute Pain
急性疼痛中的内源性大麻素代谢
  • 批准号:
    10356880
  • 财政年份:
    2020
  • 资助金额:
    $ 96.16万
  • 项目类别:
A Multimodal Approach for Monitoring Prolonged Acute Pain in Neonates
监测新生儿长期急性疼痛的多模式方法
  • 批准号:
    10218273
  • 财政年份:
    2020
  • 资助金额:
    $ 96.16万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了