The Pain Neural Transcriptome

疼痛神经转录组

基本信息

  • 批准号:
    8736696
  • 负责人:
  • 金额:
    $ 74.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

Overview: Last year we established research methodology and protocols, built an infrastructure of hardware and software, formed collaborative arrangements, trained a team of scientists and support personnel, and performed over 150 sequencing runs on the Illumina HiSeq 2000. Over 15 billion bases of transcriptome sequence information have been generated, consequently, the main effort has been devoted to intensive analysis of the resulting data sets. We have sequenced the transcriptomes of physiologically or genetically labeled pain-sensing neurons sorted by FACS, neurons in dorsal spinal cord during peripheral inflammation and models of rheumatoid arthritis, inflamed peripheral tissue, and axotomized DRG and dorsal and ventral spinal cords. We have sampled multiple time points to follow the evolution and resolution of the intervention with enough samples at each point to permit statistical comparison. Because we sorted for certain neuronal populations we know which genes are in the pain-sensing neurons and which are in mainly non-pain-sensing neurons such as proprioceptive primary afferents. The ability to form incisive hypotheses regarding pain physiology is greatly advanced by this type of neuron-specific information and we now have quantitative information on all the genes that mediate DRG and sensory and motor spinal cord functions. TRPV1 Transcriptome: One important focus of the neuronal sorting experiments is a particular subpopulation of DRG neurons that express a multifunctional thermo- chemo- pH- and lipid-responsive ion channel called TRPV1. This ion channel is also gated by capsaicin, the active ingredient in hot pepper. Previous experiments demonstrated that the potent capsaicin analog resiniferatoxin (RTX) can control cancer pain in dogs and humans. Because of this crucial role, we want to know everything possible about TRPV1-expressing DRG neurons. We isolated TRPV1 neurons by genetic labeling or physiological activation and then performed deep sequencing of the mRNA content using next-gen RNA-Seq. The genetic method expressed a fluorescent marker allowing the TRPV1 DRG neurons to be isolated by FACS. A second strategy was to isolate by pharmacological activation. We loaded primary DRG neurons with a calcium sensitive dye, stimulated them with RTX and sorted the neurons that displayed RTX-induced increases in fluorescence. We also killed the cells either genetically or by microinjection of RTX. Our first paper (in preparation) outlines the transcriptome results from the genetically labeled TRPV1 neurons and ganglia in which the TRPV1 neurons had been deleted by expression of diphtheria toxin or microinjection of RTX. This has provided comprehensive new information on genes expressed by a clinically important population of nociceptive neurons. Analgesia transcriptome: One of the most interesting aspects of the transcriptome analyses is quantitative insight provided by next-gen RNA-Seq. We now know the quantitative relationships between the exact genes that mediate the actions of known analgesic drugs such as morphine, clonidine, lidocaine, ibuprofen, and gabapentin. It has not been clear which paralogs or subunits of drug binding receptors are expressed by different tissues in the pain pathway, yet this becomes clear when expression values for all the relevant genes are obtained quantitatively, at the same time, and with excellent reproducibility between animals and treatments. Additional analgesic targets: The transcriptome experiments also point to new targets for potential analgesic drug development. New targets that are highly differentially expressed in the TRPV1 population include an orphan GPCR, a lipid-binding GPCR, and a leukotriene receptor. In some cases prototype agonists or antagonists are available although their analgesic potential has not been explored. In another example, we observe that the Mu opioid receptor is expressed exclusively in the DRG and not in the dorsal spinal cord. This allows us to conclude that epidural or intrathecal opioid analgesia is solely mediated by a presynaptic action on DRG neurons. Amplification of ongoing studies: The RNA-Seq results also inform and amplify hypothesis-driven studies from our and other groups. In a collaborative work with NIAAA, we observe that certain lipids are TRPV1 agonists. Using the transcriptome databases, we extracted the quantitative expression data for all the genes involved in lipid transport, generation, degradation, and the cognate receptors for the relevant lipids from sequencing of skin, DRG and dorsal spinal cord. Differential expression levels therein provided insight into new enzymes that generate a particular, yet previously unrecognized, family of lipids that may be very important for TRPV1 activation. Canine ganglionic transcriptome: We have nearly completed the canine tissue collection for the cancer pain transcriptome study. The ganglion and spinal cord tissue have been obtained from controls and animals with osteosarcoma that were euthanized because of inadequate pain control or treated with resiniferatoxin and tissues obtained at autopsy. This study was undertaken to test for genes activated by nociceptive input from naturally occurring bone cancer and modulated by treatment. We can also make comparison to parallel studies in mouse, rat and human, although the exact models or cancer problems will be different. This is a unique set of data that will provide new insight into the transcriptomics of cancer pain in a species with a cancer pain problem that is very similar to the human. Cross-species comparison: Another project we are in the process of completing is a species comparison of the trigeminal ganglion transcriptome. The trigeminal ganglia and the medulla (medullary dorsal horn) are equivalent to DRG and spinal cord for the face and head. We have obtained and analyzed these two tissues in collaboration with Dr. Joel Kleinman formerly of NIMH. We have trigeminal ganglion sequence information from mouse, rat, and monkey and soon the dog. Comparisons show several remarkable species differences in degree of expression. This study is providing a new level of cross-species validation of potential therapeutic targets and mechanisms that aid in ascertaining the predictive capability of translational animal models. Summary: The data sets acquired over the past year provide unprecedented and extremely fine grained detail on gene expression in pain sensing circuits. This may seem complicated but the basic goal is to understand how we sense pain and how we may control it when necessary. There are a wide variety of painful stimuli that can be encountered in our environment and different neurons exist to sense these different types of pain signals. We are trying to figure out exactly what molecules the different types of pain sensing neurons make and how they work together to do their job. We will use this information to understand pain signaling and how to control it. Taken together these data will provide a transformative new resource for the pain research community and will allow a new much more precise assessment of experimental manipulations and verification of experimental results.
概述:去年,我们建立了研究方法和方案,建立了硬件和软件基础设施,形成了协作安排,培训了一支科学家和支持人员团队,并在Illumina HiSeq 2000上进行了150多次测序。已经产生了超过150亿个转录组序列信息碱基,因此,主要的工作一直致力于对所产生的数据集进行深入分析。我们对通过FACS分类的生理或遗传标记的痛觉神经元、外周炎症和类风湿关节炎模型中脊髓背侧的神经元、炎症外周组织、轴切DRG和脊髓背侧和腹侧的神经元进行了转录组测序。我们对多个时间点进行采样,以跟踪干预的演变和分辨率,每个时间点都有足够的样本,以便进行统计比较。因为我们对特定的神经元群进行了分类,我们知道哪些基因存在于痛觉神经元中,哪些基因主要存在于非痛觉神经元中,比如本体感觉初级传入神经。这种类型的神经元特异性信息极大地促进了对疼痛生理学形成敏锐假设的能力,我们现在有了介导DRG和感觉和运动脊髓功能的所有基因的定量信息。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael J. Iadarola其他文献

Thermosensory Loss is Correlated with Primary Afferent Nociceptive Fibers Deletion in Postmortem Dorsal Root Ganglion and Spinal Cord in a Cancer Patient Treated with Resiniferatoxin
热感觉丧失与接受树脂毒素治疗的癌症患者死后背根神经节和脊髓中初级传入伤害性纤维的缺失相关
  • DOI:
    10.1016/j.jpain.2024.01.145
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Gustavo Serrano-Berríos;Matthew R. Sapio;Pranavi Nara;Allison Manalo;Andre Ghetti;Michael J. Iadarola;Andrew J. Mannes
  • 通讯作者:
    Andrew J. Mannes
Targeting Peripheral and Central Sensitization of Morton’s Neuroma Pain
针对莫顿神经瘤疼痛的外周和中枢敏化
  • DOI:
    10.1016/j.jpain.2024.01.142
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Ellen S. Staedtler;Shruthi Satyanarayana;Eleni Frangos;Matthew R. Sapio;Misha Backonja;Michael J. Iadarola;Andrew J. Mannes
  • 通讯作者:
    Andrew J. Mannes
Characterization Of Distinct Nociceptive Populations In The Human Drg
人类背根神经节中不同伤害感受群体的特征描述
  • DOI:
    10.1016/j.jpain.2023.02.059
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Ellen S. Staedtler;Michael J. Iadarola;Matthew R. Sapio;Dragan Maric;André Ghetti;Andrew J. Mannes
  • 通讯作者:
    Andrew J. Mannes
Cholecystokinin turnover in brain
  • DOI:
    10.1016/0006-8993(83)90751-5
  • 发表时间:
    1983-10-16
  • 期刊:
  • 影响因子:
  • 作者:
    James L. Meek;Michael J. Iadarola;Osvaldo Giorgi
  • 通讯作者:
    Osvaldo Giorgi
Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: challenges and opportunities
生物标志物的发现与验证以辅助安全有效止痛疗法的开发:挑战与机遇
  • DOI:
    10.1038/s41582-020-0362-2
  • 发表时间:
    2020-06-15
  • 期刊:
  • 影响因子:
    33.100
  • 作者:
    Karen D. Davis;Nima Aghaeepour;Andrew H. Ahn;Martin S. Angst;David Borsook;Ashley Brenton;Michael E. Burczynski;Christopher Crean;Robert Edwards;Brice Gaudilliere;Georgene W. Hergenroeder;Michael J. Iadarola;Smriti Iyengar;Yunyun Jiang;Jiang-Ti Kong;Sean Mackey;Carl Y. Saab;Christine N. Sang;Joachim Scholz;Marta Segerdahl;Irene Tracey;Christin Veasley;Jing Wang;Tor D. Wager;Ajay D. Wasan;Mary Ann Pelleymounter
  • 通讯作者:
    Mary Ann Pelleymounter

Michael J. Iadarola的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael J. Iadarola', 18)}}的其他基金

Integrative And Molecular Studies Of Pain & Pain Control
疼痛的综合和分子研究
  • 批准号:
    6814532
  • 财政年份:
  • 资助金额:
    $ 74.27万
  • 项目类别:
Mechanisms of Pain and Immune Processes
疼痛和免疫过程的机制
  • 批准号:
    7967114
  • 财政年份:
  • 资助金额:
    $ 74.27万
  • 项目类别:
INTEGRATIVE AND MOLECULAR STUDIES OF PAIN AND PAIN CONTROL
疼痛和疼痛控制的综合分子研究
  • 批准号:
    6432046
  • 财政年份:
  • 资助金额:
    $ 74.27万
  • 项目类别:
Mechanisms of Pain and Immune Processes
疼痛和免疫过程的机制
  • 批准号:
    8553351
  • 财政年份:
  • 资助金额:
    $ 74.27万
  • 项目类别:
The Pain Neural Transcriptome
疼痛神经转录组
  • 批准号:
    8552558
  • 财政年份:
  • 资助金额:
    $ 74.27万
  • 项目类别:
Integrative/Molecular Studies Of Pain And Pain Control
疼痛和疼痛控制的综合/分子研究
  • 批准号:
    6531938
  • 财政年份:
  • 资助金额:
    $ 74.27万
  • 项目类别:
Integrative And Molecular Studies Of Pain And Pain Control
疼痛和疼痛控制的综合和分子研究
  • 批准号:
    8344127
  • 财政年份:
  • 资助金额:
    $ 74.27万
  • 项目类别:
Mechanisms of Pain and Immune Processes
疼痛和免疫过程的机制
  • 批准号:
    7733937
  • 财政年份:
  • 资助金额:
    $ 74.27万
  • 项目类别:
Integrative And Molecular Studies Of Pain And Pain Contr
疼痛和疼痛控制的综合和分子研究
  • 批准号:
    6966492
  • 财政年份:
  • 资助金额:
    $ 74.27万
  • 项目类别:
The Pain Neural Transcriptome
疼痛神经转录组
  • 批准号:
    8336411
  • 财政年份:
  • 资助金额:
    $ 74.27万
  • 项目类别:

相似海外基金

Clinical Outcome Assessments for Acute Pain Therapeutics in Infants and young Children (COA APTIC)
婴幼儿急性疼痛治疗的临床结果评估 (COA APTIC)
  • 批准号:
    10778757
  • 财政年份:
    2023
  • 资助金额:
    $ 74.27万
  • 项目类别:
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
  • 批准号:
    10603436
  • 财政年份:
    2023
  • 资助金额:
    $ 74.27万
  • 项目类别:
Clinical Outcome Assessments for Acute Pain Therapeutics in Infants and young Children (COA APTIC)
婴幼儿急性疼痛治疗的临床结果评估 (COA APTIC)
  • 批准号:
    10783106
  • 财政年份:
    2023
  • 资助金额:
    $ 74.27万
  • 项目类别:
Development of A Focused Ultrasound Device for Noninvasive, Peripheral Nerve Blockade to Manage Acute Pain
开发用于非侵入性周围神经阻断来治疗急性疼痛的聚焦超声装置
  • 批准号:
    10740796
  • 财政年份:
    2023
  • 资助金额:
    $ 74.27万
  • 项目类别:
Predicting Pediatric Sickle Cell Disease Acute Pain Using Mathematical Models Based on mHealth Data
使用基于移动健康数据的数学模型预测儿童镰状细胞病急性疼痛
  • 批准号:
    10599401
  • 财政年份:
    2022
  • 资助金额:
    $ 74.27万
  • 项目类别:
Non-Contingent Acute Pain Stress Drives Analgesic Protection in Rats.
非偶然急性疼痛应激驱动大鼠镇痛保护。
  • 批准号:
    575854-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 74.27万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Prefrontal Cortex Hemodynamic Responses to Mindfulness Meditation and Acute Pain
前额皮质血流动力学对正念冥想和急性疼痛的反应
  • 批准号:
    467076
  • 财政年份:
    2021
  • 资助金额:
    $ 74.27万
  • 项目类别:
    Studentship Programs
A Multimodal Approach for Monitoring Prolonged Acute Pain in Neonates
监测新生儿长期急性疼痛的多模式方法
  • 批准号:
    9979265
  • 财政年份:
    2020
  • 资助金额:
    $ 74.27万
  • 项目类别:
Endocannabinoid Metabolism in Acute Pain
急性疼痛中的内源性大麻素代谢
  • 批准号:
    10356880
  • 财政年份:
    2020
  • 资助金额:
    $ 74.27万
  • 项目类别:
A Multimodal Approach for Monitoring Prolonged Acute Pain in Neonates
监测新生儿长期急性疼痛的多模式方法
  • 批准号:
    10218273
  • 财政年份:
    2020
  • 资助金额:
    $ 74.27万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了