3-D MICROTISSUES WITH PERFUSED HUMAN CAPILLARIES
具有灌注人体毛细血管的 3-D 微组织
基本信息
- 批准号:8362706
- 负责人:
- 金额:$ 0.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-04-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnimalsAreaBiologyBiotechnologyBlood capillariesCell LineCellular biologyChemicalsDevicesEmbryonic DevelopmentEndothelial CellsExerciseFibrinFundingGastrointestinal tract structureGrantHumanIn VitroLasersLengthLungMetabolicMicrocirculationMicrofabricationMicrofluidic MicrochipsMicrofluidicsModelingNational Center for Research ResourcesNutrientOrganOxygenPermeabilityPrincipal InvestigatorResearchResearch InfrastructureResourcesScreening procedureSignal TransductionSkinSourceStromal CellsTechnologyTimeTissue EngineeringToxic effectToxicity TestsToxinUnited States National Institutes of HealthWaste ProductsWound Healingangiogenesisarteriolecapillarycapillary bedcell motilitycostdesigndirect applicationdrug discoveryhigh throughput screeninghuman tissuein vitro Modelin vivoinnovationmeetingsoptical imagingtumorigenesisvenulevirtualwasting
项目摘要
This subproject is one of many research subprojects utilizing the resources
provided by a Center grant funded by NIH/NCRR. Primary support for the subproject
and the subproject's principal investigator may have been provided by other sources,
including other NIH sources. The Total Cost listed for the subproject likely
represents the estimated amount of Center infrastructure utilized by the subproject,
not direct funding provided by the NCRR grant to the subproject or subproject staff.
This application addresses broad Challenge Area (06) Enabling Technologies and specific Challenge Topic, 06-ES-102* 3-D or virtual models to reduce use of animals in research: Creation of miniature multi-cellular organs for high throughput screening for chemical toxicity testing. Human tissue is three-dimensional, and requires convective transport of nutrients and waste through capillary networks to meet metabolic demands. Chemical toxins are primarily absorbed through the microcirculation of the skin, lungs, and gastrointestinal tract. However, there are no three-dimensional in vitro models of human tissue which contain perfused human capillaries. Our project will create a high throughput platform of 3-D human microtissues (~ 1 mm3) that receive nutrients and eliminate waste products by perfused human capillaries. The platform will be comprised of parallel endothelial cell-lined microfluidic channels, mimicking an arteriole and venule, separated by a third central parallel channel that contains stromal cells embedded in fibrin. The channels are filled with flowing media enriched with oxygen and other nutrients, and are porous at fixed intervals which define the length of the microtissue. The pores allow the endothelial cells to respond to angiogenic signals from the stromal cells by sprouting and forming a capillary network to meet the metabolic needs. Our strategy employs microfabrication technology to create the fluidic channels and pores, but is biology-inspired by mimicking the steps of in-vivo angiogenesis. The resulting platform will contain > 1,000 microtissues on a single device no larger than 500 cm2, and is ideally suited for high throughput chemical toxicity screening in which > 50 different chemicals or chemical concentrations can be studied simultaneously. We propose two specific aims: 1) fabricate the microfluidic device with the capacity to create 3-D microtissues perfused with human capillaries in a high throughput fashion; and 2) create the 3-D microtissues perfused with human capillaries, and characterize the capillary network permeability. The innovation of the proposal lies in the design strategy which combines microfabrication, microfluidics, optical imaging, and endothelial/stromal cell biology to achieve, for the first time, an in-vitro perfused human capillary bed. Completion of the project will provide a high-throughput controlled platform to study the human microcirculation with direct application to high throughput chemical toxicity testing, but also a broad range of additional fields including drug discovery, normal and ischemic wound healing, adaptation to exercise, embryogenesis, oncogenesis, cell migration, and tissue engineering.
这个子项目是许多利用资源的研究子项目之一
由NIH/NCRR资助的中心拨款提供。子项目的主要支持
而子项目的主要调查员可能是由其他来源提供的,
包括其它NIH来源。 列出的子项目总成本可能
代表子项目使用的中心基础设施的估计数量,
而不是由NCRR赠款提供给子项目或子项目工作人员的直接资金。
该应用程序解决了广泛的挑战领域(06)使能技术和特定的挑战主题,06-ES-102* 3-D或虚拟模型,以减少在研究中使用动物:创建微型多细胞器官,用于化学毒性测试的高通量筛选。 人体组织是三维的,需要通过毛细血管网络对流输送营养物质和废物以满足代谢需求。 化学毒素主要通过皮肤、肺和胃肠道的微循环吸收。 然而,还没有包含灌注的人毛细血管的人体组织的三维体外模型。 我们的项目将创建一个高通量的3-D人体微组织(~ 1 mm 3)平台,通过灌注人体毛细血管接收营养物质并消除废物。 该平台将由平行的内皮细胞内衬微流体通道组成,模拟小动脉和小静脉,由第三个中心平行通道隔开,该通道含有包埋在纤维蛋白中的基质细胞。这些通道充满了富含氧气和其他营养物质的流动介质,并且在限定微组织长度的固定间隔处是多孔的。 这些孔允许内皮细胞通过发芽和形成毛细血管网络来响应来自基质细胞的血管生成信号,以满足代谢需要。 我们的策略采用微加工技术来创建流体通道和孔,但通过模仿体内血管生成的步骤而受到生物启发。由此产生的平台将在不大于500 cm 2的单个装置上包含> 1,000个微组织,并且非常适合于高通量化学毒性筛选,其中可以同时研究> 50种不同的化学品或化学浓度。 我们提出两个具体目标:1)制造具有以高通量方式产生用人毛细血管灌注的3-D微组织的能力的微流体装置;以及2)产生用人毛细血管灌注的3-D微组织,并表征毛细血管网络渗透性。 该提案的创新之处在于结合了微加工,微流体,光学成像和内皮/基质细胞生物学的设计策略,首次实现了体外灌注的人体毛细血管床。 该项目的完成将提供一个高通量的控制平台,以研究人类微循环,直接应用于高通量化学毒性测试,而且还广泛的其他领域,包括药物发现,正常和缺血性伤口愈合,适应运动,胚胎发生,肿瘤发生,细胞迁移和组织工程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven CARL George其他文献
Steven CARL George的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven CARL George', 18)}}的其他基金
An Integrated In Vitro 3D Model of Human Bone Marrow and Peripheral Infection
人体骨髓和外周感染的集成体外 3D 模型
- 批准号:
10609156 - 财政年份:2022
- 资助金额:
$ 0.16万 - 项目类别:
An Integrated In Vitro 3D Model of Human Bone Marrow and Peripheral Infection
人体骨髓和外周感染的集成体外 3D 模型
- 批准号:
10550076 - 财政年份:2022
- 资助金额:
$ 0.16万 - 项目类别:
An Integrated In Vitro 3D Model of Human Bone Marrow and Peripheral Infection
人体骨髓和外周感染的集成体外 3D 模型
- 批准号:
10488180 - 财政年份:2021
- 资助金额:
$ 0.16万 - 项目类别:
An Integrated In Vitro 3D Model of Human Bone Marrow and Peripheral Infection
人体骨髓和外周感染的集成体外 3D 模型
- 批准号:
10705910 - 财政年份:2021
- 资助金额:
$ 0.16万 - 项目类别:
An Integrated In Vitro 3D Model of Human Bone Marrow and Peripheral Infection
人体骨髓和外周感染的集成体外 3D 模型
- 批准号:
10223815 - 财政年份:2021
- 资助金额:
$ 0.16万 - 项目类别:
An Integrated In Vitro 3D Model of Human Bone Marrow and Peripheral Infection
人体骨髓和外周感染的集成体外 3D 模型
- 批准号:
10649625 - 财政年份:2021
- 资助金额:
$ 0.16万 - 项目类别:
Training Program in Cardiovascular Applied Research and Entrepreneurship
心血管应用研究与创业培训项目
- 批准号:
8551458 - 财政年份:2013
- 资助金额:
$ 0.16万 - 项目类别:
An integrated in vitro model of perfused tumor and cardiac tissue
灌注肿瘤和心脏组织的集成体外模型
- 批准号:
9264734 - 财政年份:2012
- 资助金额:
$ 0.16万 - 项目类别:
An integrated in vitro model of perfused tumor and cardiac tissue
灌注肿瘤和心脏组织的集成体外模型
- 批准号:
8516127 - 财政年份:2012
- 资助金额:
$ 0.16万 - 项目类别:
A 3-D In Vitro Platform of Tumor Metastasis (PQ24)
肿瘤转移的 3D 体外平台 (PQ24)
- 批准号:
8871694 - 财政年份:2012
- 资助金额:
$ 0.16万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 0.16万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 0.16万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 0.16万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 0.16万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 0.16万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 0.16万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 0.16万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 0.16万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 0.16万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 0.16万 - 项目类别:
Research Grant