Genomic Bases of Behavioral Learning: Single Cell Approaches
行为学习的基因组基础:单细胞方法
基本信息
- 批准号:8460174
- 负责人:
- 金额:$ 39.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-01 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAfferent NeuronsAlzheimer&aposs DiseaseAplysiaAttentionBehaviorBehavioralBiological ModelsBrainCell CommunicationCellsChIP-seqCyclic AMPCyclic GMPDevelopmentDiseaseDrug AddictionEnhancersEventFunctional disorderGene ExpressionGene Expression RegulationGenesGenomeGenomicsHeartIn VitroIndividualInterneuronsLearningLifeLinkLogicMapsMemoryMemory LossMolecularMolecular TargetMonitorMotor NeuronsNeuronsNeurosciencesOutputPathway interactionsPhenotypePhysiologicalPreparationReflex actionRegulator GenesRegulatory PathwayResolutionRoleSchizophreniaSecond Messenger SystemsSerotoninSignal PathwaySignal TransductionSignaling MoleculeSynapsesSynaptic plasticityTechnologyTestingTimeTranscriptional RegulationWithdrawalage relatedbasechromatin remodelingclassical conditioningconditioningexperiencegenome-widehuman diseasein vivomemory processmolecular siteneural circuitneurodevelopmentoperationpromoterrelating to nervous systemsecond messengertranscription factortranscriptome sequencing
项目摘要
DESCRIPTION (provided by applicant): Experience-dependent synaptic plasticity and underlying gene regulation are crucial for normal brain development and learning, and are disrupted in a broad array of disorders of development and learning such as schizophrenia, Alzheimer's disease, drug addiction and age related memory loss. To date, most studies of the cellular and molecular mechanisms of synaptic plasticity and gene regulation have taken a highly reductionist approach in very simplified preparations in vitro. However, practically nothing is known about genomic mechanisms of memory that occur during actual behavioral learning in the intact brain. In particular, the reductionist approach makes it difficult or impossible to study the integration of different inputs and pathways that is critical for many aspects of learning, and is a hallmark of neurodevelopment and associative learning. For these reasons, our long-term objectives are to characterize genome-wide mechanisms of long-term plasticity at the level of single identified neurons during behavioral learning. For this challenging task we will use the well-defined model system of the Aplysia withdrawal reflex, with a nearly complete mapping of a simple memory-forming circuit in a simplified behavioral preparation. We will record the activity of key individually identified neurons in that circuit and the synaptic connections between them during both a nonassociative form of learning (sensitization) and an associative form of learning (classical conditioning). And, for the first time, we will monitor the operation of the entire genome within specific individual neurons as they learn and remember. As a result, we will link neural activity to gene expression, plasticity, and behavior. We will also identify neuron type specific cellular signaling mechanisms and gene regulatory pathways during sensitization and conditioning, and test their roles in long-term plasticity. Based on our previous results, we hypothesize that three signaling pathways (5-HT, NO, and activity) act synergistically to produce more specific and longer-lasting memory traces during conditioning than during sensitization. Furthermore, 5-HT and NO can each change expression at least a thousand genes (some of which overlap) and induce large-scale chromatin remodeling. These findings have raised a fundamental question: how are these different inputs integrated at the level of genome-wide gene regulation in individual neurons in the circuit for conditioning? We will identify critical molecular targets (including promoters, enhancers and relevant transcription factors) leading to such integration, and examine their roles as decision points in the formation of long-lasting memories. These studies will significantly advance our understanding of synaptic and genomic mechanisms that contribute to circuit formation, learning, and memory, and their possible dysfunction in diseases that affect neurodevelopment and memory.
描述(由申请人提供):经验依赖性突触可塑性和潜在的基因调节对于正常的大脑发育和学习至关重要,并且在一系列广泛的发育和学习障碍中被破坏,例如精神分裂症、阿尔茨海默病、药物成瘾和年龄相关的记忆丧失。到目前为止,大多数研究突触可塑性和基因调控的细胞和分子机制采取了高度简化的方法,在非常简单的准备在体外。然而,对于完整大脑在实际行为学习过程中发生的记忆的基因组机制,几乎一无所知。特别是,还原论的方法使得研究不同输入和途径的整合变得困难或不可能,这对学习的许多方面至关重要,并且是神经发育和联想学习的标志。 由于这些原因,我们的长期目标是在行为学习过程中,在单个识别的神经元水平上表征长期可塑性的全基因组机制。对于这个具有挑战性的任务,我们将使用定义良好的记忆缺失退缩反射模型系统,在简化的行为准备中几乎完整地映射了一个简单的记忆形成回路。我们将记录在非联想形式的学习(敏化)和联想形式的学习(经典条件反射)中,该回路中关键的单独识别神经元的活动以及它们之间的突触连接。而且,我们将首次监测特定个体神经元在学习和记忆时整个基因组的运作。因此,我们将把神经活动与基因表达、可塑性和行为联系起来。我们还将确定神经元类型特异性细胞信号传导机制和基因调控途径在敏化和条件反射,并测试其在长期可塑性的作用。 基于我们以前的研究结果,我们假设,三个信号通路(5-HT,NO和活动)协同作用,以产生更具体和更持久的记忆痕迹在条件反射过程中比在敏化。此外,5-HT和NO可以分别改变至少一千个基因的表达(其中一些重叠),并诱导大规模的染色质重塑。这些发现提出了一个根本性的问题:这些不同的输入是如何整合到调节回路中单个神经元的全基因组基因调控水平上的?我们将确定导致这种整合的关键分子靶点(包括启动子,增强子和相关转录因子),并研究它们在形成持久记忆中作为决策点的作用。这些研究将大大推进我们对突触和基因组机制的理解,这些机制有助于回路形成,学习和记忆,以及它们在影响神经发育和记忆的疾病中可能的功能障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT D HAWKINS其他文献
ROBERT D HAWKINS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT D HAWKINS', 18)}}的其他基金
Neurotrophins and consolidation of learning-related synaptic plasticity
神经营养素和学习相关突触可塑性的巩固
- 批准号:
10240484 - 财政年份:2020
- 资助金额:
$ 39.54万 - 项目类别:
Neurotrophins and consolidation of learning-related synaptic plasticity
神经营养素和学习相关突触可塑性的巩固
- 批准号:
10663312 - 财政年份:2020
- 资助金额:
$ 39.54万 - 项目类别:
Neurotrophins and consolidation of learning-related synaptic plasticity
神经营养素和学习相关突触可塑性的巩固
- 批准号:
10452648 - 财政年份:2020
- 资助金额:
$ 39.54万 - 项目类别:
Neurotrophins, spontaneous release, and synaptic growth cascades
神经营养素、自发释放和突触生长级联
- 批准号:
8558263 - 财政年份:2013
- 资助金额:
$ 39.54万 - 项目类别:
Neurotrophins, spontaneous release, and synaptic growth cascades
神经营养素、自发释放和突触生长级联
- 批准号:
9096241 - 财政年份:2013
- 资助金额:
$ 39.54万 - 项目类别:
Neurotrophins, spontaneous release, and synaptic growth cascades
神经营养素、自发释放和突触生长级联
- 批准号:
8875789 - 财政年份:2013
- 资助金额:
$ 39.54万 - 项目类别:
Neurotrophins, spontaneous release, and synaptic growth cascades
神经营养素、自发释放和突触生长级联
- 批准号:
8656824 - 财政年份:2013
- 资助金额:
$ 39.54万 - 项目类别:
Genomic Bases of Behavioral Learning: Single Cell Approaches
行为学习的基因组基础:单细胞方法
- 批准号:
8290561 - 财政年份:2011
- 资助金额:
$ 39.54万 - 项目类别:
Genomic Bases of Behavioral Learning: Single Cell Approaches
行为学习的基因组基础:单细胞方法
- 批准号:
8086817 - 财政年份:2011
- 资助金额:
$ 39.54万 - 项目类别:
Aggregation of presynaptic proteins during LTP
LTP 期间突触前蛋白的聚集
- 批准号:
6989047 - 财政年份:2002
- 资助金额:
$ 39.54万 - 项目类别:
相似海外基金
How Spinal Afferent Neurons Control Appetite and Thirst
脊髓传入神经元如何控制食欲和口渴
- 批准号:
DP220100070 - 财政年份:2023
- 资助金额:
$ 39.54万 - 项目类别:
Discovery Projects
The mechanisms of the signal transduction from brown adipocytes to afferent neurons and its significance.
棕色脂肪细胞向传入神经元的信号转导机制及其意义。
- 批准号:
23K05594 - 财政年份:2023
- 资助金额:
$ 39.54万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10477437 - 财政年份:2021
- 资助金额:
$ 39.54万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10315571 - 财政年份:2021
- 资助金额:
$ 39.54万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10680037 - 财政年份:2021
- 资助金额:
$ 39.54万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10654779 - 财政年份:2021
- 资助金额:
$ 39.54万 - 项目类别:
Neurobiology of Intrinsic Primary Afferent Neurons
内在初级传入神经元的神经生物学
- 批准号:
10275133 - 财政年份:2021
- 资助金额:
$ 39.54万 - 项目类别:
GPR35 on Vagal Afferent Neurons as a Peripheral Drug Target for Treating Diet-Induced Obesity
迷走神经传入神经元上的 GPR35 作为治疗饮食引起的肥胖的外周药物靶点
- 批准号:
10470747 - 财政年份:2021
- 资助金额:
$ 39.54万 - 项目类别:
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2018
- 资助金额:
$ 39.54万 - 项目类别:
Discovery Grants Program - Individual
Roles of mechanosensory ion channels in myenteric intrinsic primary afferent neurons
机械感觉离子通道在肌间固有初级传入神经元中的作用
- 批准号:
RGPIN-2014-05517 - 财政年份:2017
- 资助金额:
$ 39.54万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




