Optimizing automated MRI measures of atrophy in neurodegenerative disease

优化神经退行性疾病萎缩的自动 MRI 测量

基本信息

  • 批准号:
    8395094
  • 负责人:
  • 金额:
    $ 30.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-15 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Alzheimer's disease afflicts an estimated 5.1 million people in the United States, and as life expectancies increase it is anticipated that this number will continue to rise (Institute of Medicine, 2008). Besides the personal toll on the patients and their caregivers (who often are family members), the cost of caring for those with dementia is anticipated to grow from the 2011 estimate of $187 billion to $1.1 trillion by the year 2050. Currently the most widely accepted automated method for measurement of the hippocampus in Alzheimer's disease is FreeSurfer. At Brain Image Analysis, LLC we have processed the MRI data from the ADNI 1 dataset (>3500 scans) using our automated pipeline, BRAINS AutoWorkup. In our analysis have found that, in comparisons with both the standard FreeSurfer and the longitudinal stream in FreeSurfer, our methods detect a higher annual atrophy rate with a lower relative standard deviation. This leads to a substantial reduction in the estimates of subjects needed per arm of a clinical trial from 131 or 204 using FreeSurfer (longitudinal and cross-sectional workflows) to 56 using BRAINS ANN methods. This application describes how we intend to implement and test a longitudinal ANN method and test our current hippocampal segmentations against those being prepared by a collaboration of Alzheimer's disease researchers and hippocampus experts. This will provide Brain Image Analysis, LLC with the information it needs to show our methods of subcortical segmentation are the most feasible in the field for commercial image processing in the study of Alzheimer's disease and its treatment. Phase II of this project will encompass implementation of these methods into the newest version of BRAINS and the additional program infrastructure to make our methods available on a larger commercial scale, as well as implementation on a large dataset to explore clinical correlates. Working with us on this project will be renowned neuroscience researchers. These include Dr. Vincent Magnotta and Dr. Nancy Andreasen, long-term leaders of development team for BRAINS, and Dr. Doug Langbehn, serving as our statistician with substantial experience in large imaging studies designed to support clinical trials. PUBLIC HEALTH RELEVANCE: Alzheimer's disease afflicts an estimated 5.1 million people in the United States, and as life expectancies increase it is anticipated that this number will continue to rise (Hebert et al., 2003). Besides the personal toll on the patients and their caregivers (who often are family members), the cost of caring for those with dementia is anticipated to grow from the 2011 estimate of $187 billion to $1.1 trillion by the year 2050 (Institute of Medicine, 2008). The Alzheimer's Disease Neuroimaging Initiative is an ongoing, longitudinal, multicenter study designed to develop clinical, imaging, genetic and biochemical biomarkers for the early detection and tracking of Alzheimer's disease. One of the main focuses of work related to the ADNI dataset is to enhance clinical trials through providing sensitive biomarkers, such as hippocampus measures of atrophy rates, with which disease modifying effects may be monitored in clinical trials. At Brain Image Analysis, LLC we have used our current methods to analyze the ADNI MRI dataset and have found our methods to be very sensitive to hippocampal atrophy, requiring less than 1/2 the number of subjects compared to FreeSurfer to detect a 25 percent reduction in atrophy rates in a clinical trial. In this applicatin we propose to further develop and strengthen our methods as commercially available service in monitoring disease course and as biomarkers in clinical trials of agents designed to alter the course of the disease. This Phase I SBIR application proposes the following aims to more completely assess our current methods, expand them into a longitudinal pipeline, and evaluate them against a "consensus" hippocampal definition being developed in the Alzheimer's research community. AIM 1 - Implement a longitudinal artificial neural network hippocampal segmentation in BRAINS and assess its accuracy and sensitivity in following hippocampal atrophy in Alzheimer's disease, in comparison that the standard ANN used to process the preliminary data. AIM2 - Compare the results of our current hippocampal segmentation with the "consensus" methods being developed by Giovanni Frisoni and Clifford Jack. AIM3 - Calculate the ability to detect changes in longitudinal atrophy rates for the methods developed in Aims 1 and 2, and compare with those of FreeSurfer and other available methods. Working with us on this project will be renowned neuroscience researchers. These include Dr. Vincent Magnotta and Dr. Nancy Andreasen, long-term leaders of development team for BRAINS, and Dr. Doug Langbehn, serving as our statistician with substantial experience in large imaging studies designed to support clinical trials. Should Phase I be successful, Phase II of this project will encompass implementation of these methods into the newest version of BRAINS and the additional program infrastructure to make our methods available on a larger commercial scale, as well as application on the large ADNI dataset to explore clinical correlates relevant to monitoring disease progression and clinical trials.
描述(由申请人提供):在美国,阿尔茨海默病估计折磨着510万人,随着预期寿命的增加,预计这一数字将继续上升(医学研究所,2008)。除了患者及其护理人员(通常是家庭成员)的个人损失之外,预计到2050年,照顾痴呆症患者的费用将从2011年估计的1870亿美元增长到1.1万亿美元。目前最广泛接受的测量阿尔茨海默病海马的自动化方法是FreeSurfer。在Brain Image Analysis, LLC,我们使用我们的自动化流水线BRAINS AutoWorkup处理了来自ADNI 1数据集(>3500次扫描)的MRI数据。在我们的分析中发现,与标准的FreeSurfer和FreeSurfer的纵向流相比,我们的方法检测到更高的年萎缩率和更低的相对标准偏差。这导致临床试验每组所需受试者的估计值从使用FreeSurfer(纵向和横断面工作流程)的131或204人大幅减少到使用BRAINS ANN方法的56人。本应用程序描述了我们打算如何实现和测试纵向神经网络方法,并将我们目前的海马分割与阿尔茨海默病研究人员和海马体专家合作准备的海马分割进行比较。这将为Brain Image Analysis, LLC提供所需的信息,以证明我们的皮质下分割方法在阿尔茨海默病及其治疗研究的商业图像处理领域是最可行的。该项目的第二阶段将包括将这些方法应用到最新版本的BRAINS和附加的程序基础设施中,以使我们的方法在更大的商业规模上可用,以及在大型数据集上实施以探索临床相关性。和我们一起参与这个项目的将是著名的神经科学研究者。其中包括BRAINS开发团队的长期领导者Vincent Magnotta博士和Nancy Andreasen博士,以及Doug Langbehn博士,他是我们的统计学家,在旨在支持临床试验的大型成像研究方面拥有丰富的经验。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ronald Pierson其他文献

Ronald Pierson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ronald Pierson', 18)}}的其他基金

Unified high performance analysis of imaging biomarkers for Alzheimer's disease
阿尔茨海默病成像生物标志物的统一高性能分析
  • 批准号:
    9108816
  • 财政年份:
    2012
  • 资助金额:
    $ 30.41万
  • 项目类别:
Optimizing automated MRI measures of atrophy in neurodegenerative disease
优化神经退行性疾病萎缩的自动 MRI 测量
  • 批准号:
    8525304
  • 财政年份:
    2012
  • 资助金额:
    $ 30.41万
  • 项目类别:
Unified high performance analysis of imaging biomarkers for Alzheimer's disease
阿尔茨海默病成像生物标志物的统一高性能分析
  • 批准号:
    8782370
  • 财政年份:
    2012
  • 资助金额:
    $ 30.41万
  • 项目类别:

相似国自然基金

新型F-18标记香豆素衍生物PET探针的研制及靶向Alzheimer's Disease 斑块显像研究
  • 批准号:
    81000622
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
阿尔茨海默病(Alzheimer's disease,AD)动物模型构建的分子机理研究
  • 批准号:
    31060293
  • 批准年份:
    2010
  • 资助金额:
    26.0 万元
  • 项目类别:
    地区科学基金项目
跨膜转运蛋白21(TMP21)对引起阿尔茨海默病(Alzheimer'S Disease)的γ分泌酶的作用研究
  • 批准号:
    30960334
  • 批准年份:
    2009
  • 资助金额:
    22.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Pathophysiological mechanisms of hypoperfusion in mouse models of Alzheimer?s disease and small vessel disease
阿尔茨海默病和小血管疾病小鼠模型低灌注的病理生理机制
  • 批准号:
    10657993
  • 财政年份:
    2023
  • 资助金额:
    $ 30.41万
  • 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
  • 批准号:
    10381163
  • 财政年份:
    2022
  • 资助金额:
    $ 30.41万
  • 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
  • 批准号:
    10531959
  • 财政年份:
    2022
  • 资助金额:
    $ 30.41万
  • 项目类别:
The Role of Menopause-Driven DNA Damage and Epigenetic Dysregulation in Alzheimer s Disease
更年期驱动的 DNA 损伤和表观遗传失调在阿尔茨海默病中的作用
  • 批准号:
    10700991
  • 财政年份:
    2022
  • 资助金额:
    $ 30.41万
  • 项目类别:
Interneurons as early drivers of Huntington´s disease progression
中间神经元是亨廷顿病进展的早期驱动因素
  • 批准号:
    10518582
  • 财政年份:
    2022
  • 资助金额:
    $ 30.41万
  • 项目类别:
Interneurons as Early Drivers of Huntington´s Disease Progression
中间神经元是亨廷顿病进展的早期驱动因素
  • 批准号:
    10672973
  • 财政年份:
    2022
  • 资助金额:
    $ 30.41万
  • 项目类别:
Social Connectedness and Communication in Parents with Huntington''s Disease and their Offspring: Associations with Psychological and Disease Progression
患有亨廷顿病的父母及其后代的社会联系和沟通:与心理和疾病进展的关联
  • 批准号:
    10585925
  • 财政年份:
    2022
  • 资助金额:
    $ 30.41万
  • 项目类别:
Oligodendrocyte heterogeneity in Alzheimer' s disease
阿尔茨海默病中的少突胶质细胞异质性
  • 批准号:
    10180000
  • 财政年份:
    2021
  • 资助金额:
    $ 30.41万
  • 项目类别:
Serum proteome analysis of Alzheimer´s disease in a population-based longitudinal cohort study - the AGES Reykjavik study
基于人群的纵向队列研究中阿尔茨海默病的血清蛋白质组分析 - AGES 雷克雅未克研究
  • 批准号:
    10049426
  • 财政年份:
    2021
  • 资助金额:
    $ 30.41万
  • 项目类别:
Repurposing drugs for Alzheimer´s disease using a reverse translational approach
使用逆翻译方法重新利用治疗阿尔茨海默病的药物
  • 批准号:
    10295809
  • 财政年份:
    2021
  • 资助金额:
    $ 30.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了