Bacterial Functions Involved in Cell Growth Control
参与细胞生长控制的细菌功能
基本信息
- 批准号:8552602
- 负责人:
- 金额:$ 113.81万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AerobicAffectAllelesBacillus anthracisBacteriaBacteria sigma factor KatF proteinBindingCalciumCell surfaceCellsCharacteristicsCollaborationsEnzymesEquilibriumEscherichia coliEssential Amino AcidsEukaryotic CellFailureFamilyFunctional RNAGenesGenetic TranscriptionGenetic TranslationGrowthHomeostasisIn VitroIndividualInfectionIronIron-Binding ProteinsLaboratoriesLeadLinkLipopolysaccharidesMagnesiumMembraneMembrane ProteinsMessenger RNAMethodsMicrobial BiofilmsModelingModificationMolecular ChaperonesMutationNamesNational Institute of Child Health and Human DevelopmentOrganismOsmolar ConcentrationPhysiologicalPlayPolymyxinsPolyribonucleotide NucleotidyltransferaseProductionProteinsRNARNA BindingRNA DegradationRNA SplicingRNA chemical synthesisRNA degradosomeRegulationReporterRoleSalmonellaSigma FactorSiteSmall RNAStressStudentsSystemTranscription CoactivatorVirulenceWorkantimicrobial peptidecell growthcell motilitydegradosomeendonucleasegenetic analysisgenetic selectionin vivoinsightinterestloss of function mutationmutantnoveloverexpressionparallel processingpathogenperiplasmresponse
项目摘要
In the last fifteen years, the important roles of small non-coding RNAs in regulation in all organisms have been recognized and begun to be studied. Our laboratory, in collaboration with others, undertook two global searches for non-coding RNAs in E. coli, contributing significantly to the more than 80 regulatory RNAs that are now identified. A large number of these small RNAs (sRNAs) bind tightly to the RNA chaperone Hfq. We and others have shown that every RNA that binds tightly to Hfq acts by pairing with target mRNAs, regulating stability and translation of the mRNA, either positively or negatively. Our lab has studied a number of these sRNAs in detail. We have found that expression of each sRNA is regulated by different stress conditions, and that the sRNA plays an important role in adapting to stress. We have also examined the mechanism by which Hfq operates to allow sRNAs to act. The lab continues to investigate the in vivo roles of small RNAs, identifying the regulatory networks they participate in and their roles in those networks.The sRNA RyhB is important for iron homeostasis, by down-regulating expression of non-essential iron binding proteins under iron limitation. Two other sRNA remodel the outer membrane under high osmolarity conditions, while another Hfq-binding RNA, is dependent on an alternative sigma factor, Sigma E, for transcription and down-regulates outer membrane proteins. These sRNAs are characteristic of many regulatory RNAs that regulate the cell surface, possibly important during infection. Consistent with the idea that all major regulatory systems may have small RNA components, another Hfq-binding RNA, named MgrR, is regulated by PhoP and PhoQ, a two-component system important for Salmonella virulence. PhoP and PhoQ activate synthesis of the RNA under low Magnesium and low calcium conditions; the small RNA inactivates an enzyme for modification of the cell surface lipopolysaccharide, eptB, affecting the cells sensitivity to antimicrobial peptides such as polymyxin. This is the first example of regulation of an LPS modifying enzyme by sRNAs. In collaborative work, we have demonstrated that the LPS modification is under control of the sRNA. In addition, we find that the gene for the LPS modification enzyme is positively regulated by the specialized sigma factor Sigma E, leading to expression under conditions of periplasmic stress, when this LPS barrier may be particularly important. In addition, a second small RNA regulator of the eptB gene was identified, linking regulation to a switch between aerobic and anaerobic growth. This work as well as work in other labs underscores the variety of regulatory networks that sRNAs participate in. In addition to regulation of LPS and outer membrane proteins, we have now shown that multiple sRNAs regulate bacterial motility, many of them by regulating a critical transcriptional activator of flagellar synthesis, flhDC. Two sRNAs positively regulate motility, while at least four down-regulate motility. These provide unexpected new inputs to the well-studied regulation of flagellar synthesis. Bacteria such as E. coli are motile under some circumstances, but in some growth conditions form non-motile biofilms. Not surprisingly, we find that sRNAs play important roles in biofilm formation as well. We have focused on the role of DsrA, a small RNA first identified in this lab and known to positively regulate the stress sigma factor RpoS and negatively regulate the H-NS repressor. Overexpression of DsrA increases biofilm production, and this is dependent on regulation of H-NS. Deletion of dsrA decreases biofilm production, although our results suggest this may reflect multiple effects of the sRNA. Our results suggest that both flhDC, the central regulator of motility, and rpoS, encoding the stress sigma factor, act as nodes for regulation by multiple sRNAs. Using methods developed in the lab for rapidly creating translational fusions to genes of interest, we have screened multiple other transcriptional regulators for sRNA regulation. We find that only a subset of regulators are subject to sRNA effects, and we are investigating the physiological significance of this extra level of regulation. The action of these small RNAs depends on the RNA chaperone Hfq, a protein with homology to the Lsm and Sm families of eukaryotic proteins involved in RNA splicing and other functions. Hfq binds both to sRNAs and to mRNAs, and stimulates pairing, but exactly how it does this is not entirely clear. Hfq is a hexamer of identical subunits. While many mutations have been created in Hfq, these have generally been studied in vitro with purified mutant protein and a very narrow set of sRNAs and model mRNAs. In collaboration with G. Storz, NICHD, interesting hfq alleles have now been studied with multiple sRNA:mRNA reporters in vivo; the results demonstrate that some mutants are defective only for some sRNA/mRNA pairs, suggesting that there are multiple modes for Hfq to bind and act to stimulate pairing. In addition, the role of individual subunits in the hexamer had not been examined. We have created genes encoding covalently linked multimers of Hfq, allowing us to place mutations in given subunits. Initial studies suggest that some sites within Hfq need only be present on alternating subunits for full function, while others are needed on all subunits. In order to determine if factors other than Hfq are necessary for the action of these sRNAs, a genetic selection was developed to select for failure of two sRNAs to act. Among the mutations isolated were changes in conserved and essential amino acids in hfq and loss of function mutations in pnp, encoding polynucleotide phosphorylase. Polynucleotide phosphorylase (PNPase) is a 3 to 5 endonuclease that associates with the RNA degradosome, an RNAse known to be involved in degradation of sRNAs as well as their target mRNAs. pnp mutations lead to increased instability and decreased levels of multiple sRNAs, and this decreased accumulation may be sufficient to explain their failure to act. Our genetic analysis suggests that PNPase may play an unexpected role in protecting sRNAs from degradation, probably by regulating the activity of the RNA degradosome. This proposal has now been confirmed by in vitro work from B. Luisi and students at the U. of Cambridge, and we are collaborating with them to further dissect how PNPase, Hfq, and the degradosome interact.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUSAN GOTTESMAN其他文献
SUSAN GOTTESMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUSAN GOTTESMAN', 18)}}的其他基金
Bacterial Functions Involved in Cell Growth Control
参与细胞生长控制的细菌功能
- 批准号:
6433100 - 财政年份:
- 资助金额:
$ 113.81万 - 项目类别:
Proteolysis and Regulation of Bacterial Cell Growth Control
细菌细胞生长控制的蛋白水解和调节
- 批准号:
8938006 - 财政年份:
- 资助金额:
$ 113.81万 - 项目类别:
Proteolysis and Regulation of Bacterial Cell Growth Control
细菌细胞生长控制的蛋白水解和调节
- 批准号:
9556490 - 财政年份:
- 资助金额:
$ 113.81万 - 项目类别:
Proteolysis and Regulation of Bacterial Cell Growth Control
细菌细胞生长控制的蛋白水解和调节
- 批准号:
10702502 - 财政年份:
- 资助金额:
$ 113.81万 - 项目类别:
Bacterial Functions Involved in Cell Growth Control
参与细胞生长控制的细菌功能
- 批准号:
10702296 - 财政年份:
- 资助金额:
$ 113.81万 - 项目类别:
Bacterial Functions Involved in Cell Growth Control
参与细胞生长控制的细菌功能
- 批准号:
6762023 - 财政年份:
- 资助金额:
$ 113.81万 - 项目类别:
Bacterial Functions Involved in Cell Growth Control
参与细胞生长控制的细菌功能
- 批准号:
9779570 - 财政年份:
- 资助金额:
$ 113.81万 - 项目类别:
Bacterial Functions Involved in Cell Growth Control
参与细胞生长控制的细菌功能
- 批准号:
10262026 - 财政年份:
- 资助金额:
$ 113.81万 - 项目类别:
Proteolysis and Regulation of Bacterial Cell Growth Control
细菌细胞生长控制的蛋白水解和调节
- 批准号:
10486787 - 财政年份:
- 资助金额:
$ 113.81万 - 项目类别:
BACTERIAL FUNCTIONS INVOLVED IN CELL GROWTH CONTROL
参与细胞生长控制的细菌功能
- 批准号:
6289209 - 财政年份:
- 资助金额:
$ 113.81万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 113.81万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 113.81万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 113.81万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 113.81万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 113.81万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 113.81万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 113.81万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 113.81万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 113.81万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 113.81万 - 项目类别:
Grant-in-Aid for Early-Career Scientists