Exploring the metabolism of non-replicating and drug-resistant TB
探索非复制性和耐药结核病的代谢
基本信息
- 批准号:8555825
- 负责人:
- 金额:$ 65.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Aerobic BacteriaAffectAmino AcidsAnabolismAntigensAreaBacillus (bacterium)BacteriaBindingBinding SitesBiochemicalBiological AssayBiotinCarbonCell WallCellsCitric Acid CycleClinicalCoenzyme ACollaborationsCollectionComplexCouplingCytolysisDNA SequenceDevelopmentDiseaseDown-RegulationDrug resistanceElectronsEnzymesEventFolateFolic Acid AntagonistsFumarate HydrataseGenerationsGenesGenomicsGlucoseGrowthHypoxiaImmune responseIn SituIn VitroInfectionIronKnock-outLaboratoriesLibrariesLifeLigand BindingLigandsLipidsMapsMembraneMeropenemMetabolicMetabolic PathwayMetabolismModelingMutationMycobacterium tuberculosisNADHNatureNitrogenNitroimidazolesNitroreductasesOxidasesOxygenPathogenesisPeptidoglycanPeptidyltransferasePharmaceutical PreparationsPhysiologyProcessProtein FamilyProteinsPyridoxalReactionReportingResearch PersonnelResistanceRespirationRoleScanning Transmission Electron Microscopy ProceduresSingle Nucleotide PolymorphismSourceSouth AfricaStructureSuccinatesTextbooksTransferaseTrehaloseVirulentVitamin K 2arabinogalactanbasechemical geneticscofactorcytotoxicitydesigndrug discoveryenzyme substrateextracellularflasksfolic acid metabolismgenome sequencinghigh throughput screeningin vivoinhibitor/antagonistkillingsmedical schoolsmetabolic poisonmetabolomicsmutantmycobacterialnitrosative stressoxidationpantothenatepharmacophorepyridoxine 5-phosphaterespiratoryscaffoldserine-type D-Ala-D-Ala carboxypeptidasetool
项目摘要
The first project area explores metabolic pathways that have been proposed based on in vitro studies to be important in non-replicating (NR)-MTb. We are exploring the importance of the biosynthesis of the cofactors biotin, coenzyme A and pyridoxal, peptidoglycan turnover, the role of putative F420-binding and genetically annotated pyridoxal-generating enzymes, beta-oxidation and iron acquisition and validating these by chemical and genetic means in non-replicating (NR)-MTb. We have shown that Rv2607 is the canonical pyridoxine phosphate oxidase of MTb and have enzymatically characterized this enzyme. In contrast, Rv1155, which is also annotated as a pyridoxine phosphate oxidase family protein has been expressed, purified, crystalized with its F420 cofactor, biophysically characterized with and without bound cofactor and we are attempting to identify the natural substrate of this protein by analyzing shared chemotypes with known metabolites from fragments identified as binders to this protein. Another F420-dependent enzyme, Rv2991, has been crystalized and fragments chemically similar to known metabolites of flavoenzymes analyzed for binding to Rv2991 with and without F420. By analyzing common pharmacophores between known metabolites and the binders identified by this fragment-based approach, we are attempting to probe the enzymatic function of this unknown protein We have also demonstrated the importance of biotin synthesis for the viability of MTb in vitro and in vivo. We have reported that conditional downregulation of pantothenate synthase makes Mtb hypersusceptible to inhibitors of coenzyme A biosynthesis and are using this approach to identify vulnerable targets in this metabolic pathway.
Our studies of mycobacterial cell wall synthesis using meropenem as probe have allowed us to track the formation of the various layers of the mycobacterial cell wall during its assembly using a combination of cryo-electron, transmission and scanning electron microscopy. We have shown that the dual action of meropenem on both the D,D-carboxypeptidases as well as the transpeptidases on newly synthesized peptidoglycan leads to the observed polar lysis of cells.
The second major focus area of this project starts from a different perspective and uses compounds that are in clinical development (PA-824 and SQ109) which are known to possess activity against replicating as well as NR-TB. We capitalized our recently determined crystal structure of Ddn, the nitroreductase responsible for the bioreductive activation of PA824 to understand the differences in binding of the enzyme to nitroimidazoles and the relationship of this binding to the formation of the reactive nitrogen intermediates responsible for killing of Mtb. We are attempting to understand what the natural substrate is for the Ddn, since this will allow us to probe the enzymatic processes that are important during non-replicating persistence. Preliminary studies have identified menaquinone as a substrate for this enzyme. For SQ109 we were able to demonstrate that the mechanism by which this drug kills Mtb is by inhibition of the MmpL3 protein which we identified as a trehalose monomycolate transporter. To further unravel the key events in cell wall mycolyl-arabinogalactan synthesis, we have enzymatically characterized the three mycolyl transferase enzymes (Antigens 85 A, B and C). We have found that the enzymes are kinetically distinct with Ag85C being enzymatically the most active and that certain amino acid residues residing in a secondary ligand binding site control rates of acyl transfer by affecting protein confirmation in a helix connecting the two ligand binding pockets.
The third major focus of this project involves global approaches to understanding the metabolism in NR-TB. Using a chemostat model of MTb combined with metabolomic studies, we demonstrated that the NADH/NAD+ ratio changed as a function of oxygen concentration, that the direction of the TCA cycle reverses under hypoxia with concomitant extracellular succinate accumulation which is consistent with a model of oxygen-induced stasis in which an energized membrane is maintained by coupling the reductive branch of the TCA cycle to succinate secretion. An essential non-redundant step in this process is fumarase and we have initiated studies to validate the role of the forward as opposed to reverse TCA cycle in vitro as well as in vivo by using structure-based design based on the fumarase crystal structure to design inhibitors of this target. Co-crystal structures of Mtb fumarase with bound inhibitors, enzymatic as well as in situ demonstration of fumarase inhibition have corroborated our model with further inhibitor optimization being required for in vivo studies.
In a fourth approach, we are identifying inhibitors of metabolism by high-throughput screening approaches performed under a variety of in vivo relevant environmental conditions. Hits from these screens have provided a useful tool to map metabolism of MTb as a function of carbon source, oxygen concentration or presence of low pH in the presence or absence of nitrosative stress and are currently being studied to identify the target. In the process of target identification, parallel studies are done to rapidly progress the hits to in vivo proof of concept studies so that the importance of the target for in vivo pathogenesis can be validated early on in the drug discovery process. We are studying some of the hits that were identified from a 35,000 compound BioFocus collection in collaboration with various researchers in South Africa. In addition, hits from a 100,000 compound library screen from a collaborator have yielded 12 different scaffolds that are being pursued. The scaffolds that gave us evidence of a specific target based on SAR studies were taken further into target identification by a combination of approaches including resistant mutant generation followed by whole genome sequencing to identify single nucleotide polymorphisms, transcriptional profiling, macromolecular incorporation assays and metabolomics studies. For 2 chemically different scaffolds, the same target in mycobacterial cell wall synthesis was identified and efficacy studies confirmed that inhibition of some cell wall biosynthetic genes in vivo, led to a mild bacteriostatic effect. The targets of eleven other scaffolds were identified. For several other scaffolds, mutations in MmpL3, a protein we previously identified as the SQ109 target, conferred resistance suggesting that this transporter is promiscuous in its ability to bind diverse ligands. For several scaffolds, generation of resistant mutants was impossible and in several of these cases, inability to generate resistant mutants was correlated with mammalian cytotoxicity suggesting a non-specific mechanism of action. One class of compounds was shown to target oxygen-dependent respiration in Mtb. We have demonstrated that the coupling of respiration to energy generation in a vulnerable point in NR-Mtb based on inhibitors identified in a screen against anaerobically persisting Mtb.The precise point in inhibition of respiration is currently being explored by analysis of respiratory knockout mutants, biochemical assays and complementation studies. Resistance to another hit mapped to an enzyme in folate metabolism. We have been able to show that this drug functions as a metabolic poison by its ability to mimic substrates and become incorporated into folate-like metabolites by a combination of metabolomics and biochemical analyses. With collaborators at Weill Cornell Medical College, we have used this inhibitor as well as other known inhibitors of folate biosynthetic enzymes to explore how perturbation of folate-dependent reactions leads to inhibition of Mtb replication.
第一个项目领域探索基于体外研究提出的在非复制(NR)-MTb中重要的代谢途径。我们正在探索辅助因子生物素、辅酶A和吡哆醛的生物合成、肽聚糖转换的重要性,推测的f420结合和遗传注释的吡哆醛生成酶的作用,β -氧化和铁获取,并通过化学和遗传手段验证这些在非复制(NR)-MTb中的作用。我们已经证明Rv2607是结核分枝杆菌的典型吡哆醇磷酸氧化酶,并对该酶进行了酶学表征。相比之下,Rv1155,也被注释为吡doxine磷酸氧化酶家族蛋白,已经表达,纯化,与F420辅因子结晶,生物物理特征有和没有结合的辅因子,我们正试图通过分析已知代谢产物的共享化学型来确定该蛋白的天然底物,从鉴定为该蛋白结合物的片段。另一种依赖于F420的酶Rv2991已经结晶,其片段化学性质与已知的黄酶代谢产物相似,分析了是否与F420结合的Rv2991。通过分析已知代谢物和这种基于片段的方法鉴定的结合物之间的共同药效团,我们试图探索这种未知蛋白质的酶功能。我们还证明了生物素合成对MTb体外和体内生存能力的重要性。我们已经报道了泛酸合成酶的条件下调使结核分枝杆菌对辅酶A生物合成抑制剂敏感,并且正在使用这种方法来确定这一代谢途径中的易感靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Clifton Barry其他文献
Clifton Barry的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Clifton Barry', 18)}}的其他基金
Development Of New Chemotherapeutics For Tuberculosis
结核病新化疗药物的开发
- 批准号:
9161485 - 财政年份:
- 资助金额:
$ 65.51万 - 项目类别:
Exploring the metabolism of non-replicating and drug-resistant TB
探索非复制性和耐药结核病的代谢
- 批准号:
8745359 - 财政年份:
- 资助金额:
$ 65.51万 - 项目类别:
International Research in Korea: Clinical Studies of Drug-Resistant Tuberculosis
韩国国际研究:耐药结核病的临床研究
- 批准号:
8946454 - 财政年份:
- 资助金额:
$ 65.51万 - 项目类别:
Experimental Animal Models of TB: Chemotherapeutics and Imaging
结核病实验动物模型:化疗和影像学
- 批准号:
9354740 - 财政年份:
- 资助金额:
$ 65.51万 - 项目类别:
International Research in Korea: Clinical Studies of Drug-Resistant Tuberculosis
韩国国际研究:耐药结核病的临床研究
- 批准号:
8555979 - 财政年份:
- 资助金额:
$ 65.51万 - 项目类别:
International Research in Korea: Clinical Studies of Drug-Resistant Tuberculosis
韩国国际研究:耐药结核病的临床研究
- 批准号:
8336279 - 财政年份:
- 资助金额:
$ 65.51万 - 项目类别:
Experimental Animal Models of TB: Chemotherapeutics and Imaging
结核病实验动物模型:化疗和影像学
- 批准号:
10692048 - 财政年份:
- 资助金额:
$ 65.51万 - 项目类别:
Development Of New Chemotherapeutics For Tuberculosis
结核病新化疗药物的开发
- 批准号:
7732501 - 财政年份:
- 资助金额:
$ 65.51万 - 项目类别:
The Molecular Target of Isoniazid in Pathogenic Mycobacteria
异烟肼在致病分枝杆菌中的分子靶点
- 批准号:
6099057 - 财政年份:
- 资助金额:
$ 65.51万 - 项目类别:
Development Of New Chemotherapeutics For Tuberculosis
结核病新化疗药物的开发
- 批准号:
7592197 - 财政年份:
- 资助金额:
$ 65.51万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 65.51万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 65.51万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 65.51万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 65.51万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 65.51万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 65.51万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 65.51万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 65.51万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




