Multi-Scale Integration of Extracellular Matrix Mechanics in Vascular Remodeling

血管重塑中细胞外基质力学的多尺度整合

基本信息

项目摘要

Project Summary: With the current development of non-invasive diagnostics to more accurately measure the level of cardiovascular diseases (CVDs) clinically, a significant "platform science" component is better mechanistic understanding of underlying physics, such as structure-function mechanics of the arterial wall. Much of this fundamental understanding comes from the development and study of models for biomechanics, which will provide guidance for developing diagnostics, and implementation of these diagnostics to the clinical setting in turn provides data for refining the physics models. In this project, we seek to develop a multiscale predictive mechanobiology model of extracellular matrix (ECM) mechanics from a fundamental mechanics perspective coupled with critical biophysical input, and to provide a clinical relevant relationship between biomechanical integrity, biochemical composition stability, and microstructure of the ECM. Such model will enable researchers and clinicians to probe basic mechanisms, and to assist in rational design of new therapies for CVD. Specific Aim 1: Create a multiscale predictive mechanobiology model of ECM mechanics. Molecular - fiber level: a statistical mechanics based approach is adopted to determine the strain energy change accompanying deformation of a single fiber. A freely joined chain (FJC) model will be adopted to describe the possible configurations, thus entropy, of a fiber during stretching. Inter-molecular cross-linking density is a material parameter that determines the extensibility of a single fiber. Fiber - tissue level: advance the fiber-level model into a tissue-level model by incorporating fiber distribution function and adding fiber density as the next set of material parameter. A multiscale mechanobiological model that incorporates inter-molecular cross-linking, fiber distribution and fiber density will be achieved for the description of tissue-level function. Specific Aim 2: Validation of the model using an integrated experimental - modeling approach. Tissue-level ECM mechanics: the tissue-level behavior of ECM network will be fully characterized using biaxial-tensile test. Elastin and collagen network will be isolated from aortic tissue and tested individually. Fiber distribution function: the fiber orientation information of elastin and collagen will be obtained using confocal microscopy and directly incorporated into the model. Fiber density and cross-linking: the content and crosslinking density of elastin and collagen will be measured biochemically through biological assay. Corresponding material parameters in the model will be determined from fits to the biaxial-tensile testing data. 1
项目概要: 随着目前无创诊断的发展,可以更准确地测量 心血管疾病(CVD)临床上,一个显着的“平台科学”的组成部分是更好的 对基础物理学的机械理解,例如动脉的结构-功能力学 墙这种基本的理解大部分来自于模型的开发和研究, 生物力学,这将为开发诊断提供指导,并实施这些 对临床环境的诊断又提供了用于精炼物理模型的数据。在本项目中, 我们试图建立一个多尺度的预测细胞外基质(ECM)的机械生物学模型, 力学从基本力学的角度加上关键的生物物理输入,并 提供生物力学完整性、生化成分之间的临床相关关系 稳定性和ECM的微观结构。这种模型将使研究人员和临床医生能够探索 的基本机制,并协助合理设计新的治疗CVD。 具体目标1:创建ECM力学的多尺度预测力学生物学模型。 分子-纤维水平:采用基于统计力学的方法来确定应变 能量变化伴随着单根纤维的变形。自由连接链(FJC)模型 将被采用来描述可能的配置,因此熵,纤维在 伸展分子间交联密度是决定聚合物的聚合度的材料参数。 单根纤维的延伸性。 纤维-组织水平:通过引入纤维,将纤维水平模型推进到组织水平模型 分布函数,并添加纤维密度作为下一组材料参数。一 多尺度机械生物学模型,包括分子间交联、纤维 分布和纤维密度将用于描述组织水平功能。 具体目标2:使用综合实验建模方法验证模型. 组织级ECM力学:ECM网络的组织级行为将得到充分表征 采用双向拉伸试验。将从主动脉组织中分离弹性蛋白和胶原蛋白网络, 单独测试。 纤维分布函数:将获得弹性蛋白和胶原的纤维取向信息 使用共聚焦显微镜并直接结合到模型中。 纤维密度和交联:弹性蛋白和胶原蛋白的含量和交联密度将 通过生物测定进行生物化学测量。相应的材料参数 将根据双轴拉伸试验数据的拟合确定模型。 1

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yanhang Katherine Zhang其他文献

Yanhang Katherine Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yanhang Katherine Zhang', 18)}}的其他基金

Multi-Scale Integration of Extracellular Matrix Mechanics in Vascular Remodeling
血管重塑中细胞外基质力学的多尺度整合
  • 批准号:
    10530924
  • 财政年份:
    2010
  • 资助金额:
    $ 28.63万
  • 项目类别:
Multi-Scale Integration of Extracellular Matrix Mechanics in Vascular Remodeling
血管重塑中细胞外基质力学的多尺度整合
  • 批准号:
    10640173
  • 财政年份:
    2010
  • 资助金额:
    $ 28.63万
  • 项目类别:
Multi-Scale Integration of Extracellular Matrix Mechanics in Vascular Remodeling
血管重塑中细胞外基质力学的多尺度整合
  • 批准号:
    8400887
  • 财政年份:
    2010
  • 资助金额:
    $ 28.63万
  • 项目类别:
Multi-Scale Integration of Extracellular Matrix Mechanics in Vascular Remodeling
血管重塑中细胞外基质力学的多尺度整合
  • 批准号:
    8588963
  • 财政年份:
    2010
  • 资助金额:
    $ 28.63万
  • 项目类别:
Multi-Scale Integration of Extracellular Matrix Mechanics in Vascular Remodeling
血管重塑中细胞外基质力学的多尺度整合
  • 批准号:
    9239918
  • 财政年份:
    2010
  • 资助金额:
    $ 28.63万
  • 项目类别:
An Integrative Multi-Scale Model of Extracellular Matrix Mechanics in Vascular Re
血管再生中细胞外基质力学的综合多尺度模型
  • 批准号:
    8014856
  • 财政年份:
    2010
  • 资助金额:
    $ 28.63万
  • 项目类别:
Multi-Scale Integration of Extracellular Matrix Mechanics in Vascular Remodeling
血管重塑中细胞外基质力学的多尺度整合
  • 批准号:
    9766347
  • 财政年份:
    2010
  • 资助金额:
    $ 28.63万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 28.63万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了