Collaborative Systems for Analyzing Tissue Microarrays

用于分析组织微阵列的协作系统

基本信息

  • 批准号:
    8298648
  • 负责人:
  • 金额:
    $ 34.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2004
  • 资助国家:
    美国
  • 起止时间:
    2004-04-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Tissue microarray technology holds great potential for reducing the time and cost associated with conducting investigative research in cancer biology, oncology, and drug discovery. TMA's make it possible to construct a carefully planned array such that a 20-year survival analysis can be performed on a cohort of 600 or more patients using only a few micro-liters of antibody. However, capturing, organizing, updating, exchanging, and analyzing the data generated by this technology creates a number of significant challenges. The sheer volume of data, text, and images arising from even limited studies involving tissue microarrays can over time quickly approach those of a small clinical department. The central objective of this revised renewal application is to (1) build upon the progress made in the first phase of research by expanding the reference archive of imaged TMA specimens and correlated clinical data to include a wider scope of malignancies, tissues and biomarkers; (2) develop advanced imaging, computational and data management tools to support automated analysis of tissue microarrays in collaborative frameworks; and (3) increase dissemination of the query-enabled image archive and imaging and data management tools to the clinical and research communities for research, education and clinical decision support. The aims of the proposed project will be achieved through the development and implementation of advanced computational, imaging, and pattern recognition tools and new technologies. PUBLIC HEALTH RELEVANCE: Tissue microarray technology holds great promise for advancing investigative research in cancer biology, oncology and drug discovery. The overarching objective of the proposed project is to develop a suite of algorithms and software tools which facilitate automated imaging, analysis, and archiving of tissue microarrays. The key computational and imaging tools that were developed in the first phase of the project including a color decomposition algorithm for analyzing the staining characteristics of the histology; image analysis tools for automatically computing the integrated staining intensity, effective staining area and effective staining intensity of expression patterns; an intelligent image archiving system; caBIG compliant data management tools; a reference library of expression signatures for more than 120, 000 imaged tissue discs originating from a mixed set of cancer tissue microarrays; and a new texture descriptor based on region covariance which was shown to provide quick, reliable performance for identifying and delineating tumor regions and performing antigen localization at the tissue level. The central objective of this revised renewal application is to build upon the progress made in the first phase of our research by (1) expanding the reference archive of imaged specimens and correlated clinical data to include a wider range of tissues, cancer types and biomarkers; (2) building upon our prior work by integrating a vendor-independent interface to the TMA analysis and data management toolset to support a full range of commercially available virtual slide formats; (3) investigating the use of a new repulsion force term to be used in conjunction with the existing internal and external energy equations for improved accuracy in delineating boundaries in regions exhibiting dense, concentrations of cells; (4) integrating a variable channel module into the segmentation algorithm and evaluate its capacity to support multi-dimensional image data; (5) building upon our successful efforts to design, develop, and evaluate a quick, reliable approach for performing unsupervised, deformable co-registration of consecutive histological sections to facilitate analysis across multiple experiments and correlate image features across adjacent sections; (6) deploying the updated software suite, data management tools and query-enabled reference archive of imaged TMA specimens to the consortium of adopter sites and assess performance using quantitative imaging experiments and a newly developed man-machine comparative analysis software toolkit. Upon completion of the project the archive of imaged specimens, computational and data management tools will be made available to the clinical and research communities as shareable resources for collaborative research, education and clinical decision support.
描述(由申请人提供):组织微阵列技术在减少与癌症生物学、肿瘤学和药物发现进行调查研究相关的时间和成本方面具有巨大潜力。TMA使构建一个精心规划的阵列成为可能,这样,只需使用几微升抗体,就可以对600名或更多患者进行20年的生存分析。然而,捕获、组织、更新、交换和分析由该技术生成的数据会带来许多重大挑战。即使是涉及组织微阵列的有限研究所产生的大量数据、文本和图像,也可以随着时间的推移迅速接近一个小型临床部门的数据、文本和图像。此次修订的更新申请的中心目标是:(1)通过扩大TMA成像标本和相关临床数据的参考档案,包括更广泛的恶性肿瘤、组织和生物标志物,建立在第一阶段研究进展的基础上;(2)开发先进的成像、计算和数据管理工具,以支持协作框架中组织微阵列的自动分析;(3)增加向临床和研究界传播具有查询功能的图像存档、成像和数据管理工具,用于研究、教育和临床决策支持。拟议项目的目标将通过开发和实施先进的计算、成像和模式识别工具和新技术来实现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David J Foran其他文献

David J Foran的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David J Foran', 18)}}的其他基金

Informatics for Integrative Brain Tumor Whole Slide Analysis
综合脑肿瘤全玻片分析的信息学
  • 批准号:
    8675279
  • 财政年份:
    2011
  • 资助金额:
    $ 34.48万
  • 项目类别:
Informatics for Integrative Brain Tumor Whole Slide Analysis
综合脑肿瘤全玻片分析的信息学
  • 批准号:
    8294579
  • 财政年份:
    2011
  • 资助金额:
    $ 34.48万
  • 项目类别:
Informatics for Integrative Brain Tumor Whole Slide Analysis
综合脑肿瘤全玻片分析的信息学
  • 批准号:
    8163751
  • 财政年份:
    2011
  • 资助金额:
    $ 34.48万
  • 项目类别:
Image Mining for Comparative Analysis of Expression Patterns in Tissue Microarray
用于组织微阵列表达模式比较分析的图像挖掘
  • 批准号:
    7903828
  • 财政年份:
    2009
  • 资助金额:
    $ 34.48万
  • 项目类别:
Image Mining for Comparative Analysis of Expression Patterns in Tissue Microarray
用于组织微阵列表达模式比较分析的图像挖掘
  • 批准号:
    7925625
  • 财政年份:
    2007
  • 资助金额:
    $ 34.48万
  • 项目类别:
Image Mining for Comparative Analysis of Expression Patterns in Tissue Microarray
用于组织微阵列表达模式比较分析的图像挖掘
  • 批准号:
    7691690
  • 财政年份:
    2007
  • 资助金额:
    $ 34.48万
  • 项目类别:
Image Mining for Comparative Analysis of Expression Patterns in Tissue Microarray
用于组织微阵列表达模式比较分析的图像挖掘
  • 批准号:
    7323147
  • 财政年份:
    2007
  • 资助金额:
    $ 34.48万
  • 项目类别:
Image Mining for Comparative Analysis of Expression Patterns in Tissue Microarray
用于组织微阵列表达模式比较分析的图像挖掘
  • 批准号:
    7941610
  • 财政年份:
    2007
  • 资助金额:
    $ 34.48万
  • 项目类别:
Image Mining for Comparative Analysis of Expression Patterns in Tissue Microarray
用于组织微阵列表达模式比较分析的图像挖掘
  • 批准号:
    8705583
  • 财政年份:
    2007
  • 资助金额:
    $ 34.48万
  • 项目类别:
Collaborative Systems for Analyzing Tissue Microarrays
用于分析组织微阵列的协作系统
  • 批准号:
    7085360
  • 财政年份:
    2005
  • 资助金额:
    $ 34.48万
  • 项目类别:

相似海外基金

Rationally guided discovery platform for monoclonal antibodies against carbohydrate antigens using virus-like particle conjugate immunization and high throughput selection
使用病毒样颗粒缀合物免疫和高通量选择的合理引导的针对碳水化合物抗原的单克隆抗体的发现平台
  • 批准号:
    10574738
  • 财政年份:
    2023
  • 资助金额:
    $ 34.48万
  • 项目类别:
Assessing the role of liver stage antigens-specific antibodies against Plasmodium falciparum liver stage infection
评估肝期抗原特异性抗体对抗恶性疟原虫肝期感染的作用
  • 批准号:
    10392870
  • 财政年份:
    2021
  • 资助金额:
    $ 34.48万
  • 项目类别:
Generation of antibodies specific for optimal non-HRP2 malaria diagnostic antigens
生成最佳非 HRP2 疟疾诊断抗原的特异性抗体
  • 批准号:
    10092930
  • 财政年份:
    2020
  • 资助金额:
    $ 34.48万
  • 项目类别:
Generation of antibodies specific for optimal non-HRP2 malaria diagnostic antigens
生成最佳非 HRP2 疟疾诊断抗原的特异性抗体
  • 批准号:
    9896170
  • 财政年份:
    2020
  • 资助金额:
    $ 34.48万
  • 项目类别:
Interrogation of cell surface antigens on B lineage cells using structurally unique variable lymphocyte receptor antibodies of the evolutionarily distant sea lamprey
使用进化遥远的海七鳃鳗结构独特的可变淋巴细胞受体抗体询问 B 谱系细胞上的细胞表面抗原
  • 批准号:
    433456
  • 财政年份:
    2020
  • 资助金额:
    $ 34.48万
  • 项目类别:
    Operating Grants
Investigations of interactions between various natural antibodies and food-derived antigens
研究各种天然抗体与食物源性抗原之间的相互作用
  • 批准号:
    19K15765
  • 财政年份:
    2019
  • 资助金额:
    $ 34.48万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Identifying Kawasaki Disease-Specific Antibodies and Antigens
识别川崎病特异性抗体和抗原
  • 批准号:
    9932769
  • 财政年份:
    2018
  • 资助金额:
    $ 34.48万
  • 项目类别:
Novel Scoring Methods for Interactions between Antibodies and Antigens
抗体和抗原之间相互作用的新评分方法
  • 批准号:
    BB/P504713/1
  • 财政年份:
    2017
  • 资助金额:
    $ 34.48万
  • 项目类别:
    Training Grant
Novel Scoring Methods for Interactions between Antibodies and Antigens
抗体和抗原之间相互作用的新评分方法
  • 批准号:
    1932904
  • 财政年份:
    2017
  • 资助金额:
    $ 34.48万
  • 项目类别:
    Studentship
SBIR Phase II: Automated Design Methods of Antibodies Directed to Protein and Carbohydrate Antigens
SBIR II 期:针对蛋白质和碳水化合物抗原的抗体的自动化设计方法
  • 批准号:
    1632399
  • 财政年份:
    2016
  • 资助金额:
    $ 34.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了