Role of the novel gene fam4b in phosphatidylserine synthesis in podocytes and mai

新基因fam4b在足细胞和麦磷脂酰丝氨酸合成中的作用

基本信息

  • 批准号:
    8302056
  • 负责人:
  • 金额:
    $ 25.74万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-17 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The central function of mammalian kidney is ultrafiltration of plasma through the complex glomerular filtration barrier that is composed of a fenestrated endothelium, a glomerular basement membrane (GBM) and specialized epithelial cells called podocytes. The foot processes of each podocyte interconnect on the top of the GBM and protein bridges between neighboring cells from the slit diaphragm. Disruption of the slit diaphragm (SD) causes leakiness of the glomerulus, manifested as proteinuria, a typical presentation in many renal diseases. Therefore, maintaining the integrity of the glomerular filtration barrier is critical for normal kidney function. Several podocyte gene products have been found to contribute to the structure and function of the SD, such as Nephrin, CD2AP and Podocin. From a search for other factors contributing to SD function, we discovered a novel gene, fam49b, that is highly expressed in developing and mature podocytes in both zebrafish and mouse kidneys. Knocking down fam49b in zebrafish embryos led to podocyte foot process effacement, altered podocyte morphology, and renal failure. A down regulation of fam49b expression was consistently observed in kidneys from mice with proteinuric glomerular dysfunction and from patients with focal segmental glomerulosclerosis (FSGS). From a yeast two-hybrid screen we identified phosphatidylserine synthase-1 (PSS1) as a Fam49b interacting partner. Overexpression of fam49b in HEK293 cells increases the binding of a phosphatidylserine (PS)-binding reporter (Lactadherin-GFP) and enhances vesicular activity in LLCPK1 cells, suggesting that Fam49b positively regulates PSS1 activity and PS content, and increases vesicular activity in cell. Therefore, we propose that Fam49b, a novel protein, plays a conserved and critical role in maintaining the structural and functional integrity of the glomerula filtration barrier by regulating phospholipids metabolism in podocytes. For this study, we will take advantage of the well-characterized zebrafish model in combination with various in vitro model systems to explore the functional role of Fam49b. In addition, we will explore how phospholipid modulates the podocyte function therefore contribute to the pathophysiology of glomerular diseases. Specifically, we will: 1) investigate the role of Fam49b in podocyte biology and maintenance of the structure and function of slit diaphragm (SD); and 2) explore the mechanism that Fam49b regulates the structure and function of the SD through modulating phospholipids metabolism, lipid raft mediated protein trafficking and cell signaling. Our proposed study will further our understanding of not only the function of this novel gene, fam49b, but also explore the role of phospholipids in the pathophysiology of podocyte, therefore provide potentially new therapeutic targets to treat glomerular disease. PUBLIC HEALTH RELEVANCE: Kidney is a critical organ for filtering blood, removing wastes, and regulating water and salt balance in vertebral animals. We have discovered a new gene, fam49b to be critical for formation and/or function of the kidney filter, slit diaphragm. We proposed to examine the underlying mechanism of this gene and understand its contribution to the pathophysiology of "leaky" kidney diseases.
DESCRIPTION (provided by applicant): The central function of mammalian kidney is ultrafiltration of plasma through the complex glomerular filtration barrier that is composed of a fenestrated endothelium, a glomerular basement membrane (GBM) and specialized epithelial cells called podocytes. The foot processes of each podocyte interconnect on the top of the GBM and protein bridges between neighboring cells from the slit diaphragm. Disruption of the slit diaphragm (SD) causes leakiness of the glomerulus, manifested as proteinuria, a typical presentation in many renal diseases. Therefore, maintaining the integrity of the glomerular filtration barrier is critical for normal kidney function. Several podocyte gene products have been found to contribute to the structure and function of the SD, such as Nephrin, CD2AP and Podocin. From a search for other factors contributing to SD function, we discovered a novel gene, fam49b, that is highly expressed in developing and mature podocytes in both zebrafish and mouse kidneys. Knocking down fam49b in zebrafish embryos led to podocyte foot process effacement, altered podocyte morphology, and renal failure. A down regulation of fam49b expression was consistently observed in kidneys from mice with proteinuric glomerular dysfunction and from patients with focal segmental glomerulosclerosis (FSGS). From a yeast two-hybrid screen we identified phosphatidylserine synthase-1 (PSS1) as a Fam49b interacting partner. Overexpression of fam49b in HEK293 cells increases the binding of a phosphatidylserine (PS)-binding reporter (Lactadherin-GFP) and enhances vesicular activity in LLCPK1 cells, suggesting that Fam49b positively regulates PSS1 activity and PS content, and increases vesicular activity in cell. Therefore, we propose that Fam49b, a novel protein, plays a conserved and critical role in maintaining the structural and functional integrity of the glomerula filtration barrier by regulating phospholipids metabolism in podocytes. For this study, we will take advantage of the well-characterized zebrafish model in combination with various in vitro model systems to explore the functional role of Fam49b. In addition, we will explore how phospholipid modulates the podocyte function therefore contribute to the pathophysiology of glomerular diseases. Specifically, we will: 1) investigate the role of Fam49b in podocyte biology and maintenance of the structure and function of slit diaphragm (SD); and 2) explore the mechanism that Fam49b regulates the structure and function of the SD through modulating phospholipids metabolism, lipid raft mediated protein trafficking and cell signaling. Our proposed study will further our understanding of not only the function of this novel gene, fam49b, but also explore the role of phospholipids in the pathophysiology of podocyte, therefore provide potentially new therapeutic targets to treat glomerular disease. PUBLIC HEALTH RELEVANCE: Kidney is a critical organ for filtering blood, removing wastes, and regulating water and salt balance in vertebral animals. We have discovered a new gene, fam49b to be critical for formation and/or function of the kidney filter, slit diaphragm. We proposed to examine the underlying mechanism of this gene and understand its contribution to the pathophysiology of "leaky" kidney diseases.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HUA A LU其他文献

HUA A LU的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HUA A LU', 18)}}的其他基金

Novel roles of integrin b1 signaling in regulating principal cell function andmaintaining collecting duct integrity
整合素b1信号在调节主要细胞功能和维持集合管完整性中的新作用
  • 批准号:
    10220019
  • 财政年份:
    2013
  • 资助金额:
    $ 25.74万
  • 项目类别:
Novel role of AQP2 in cell migration and kidney tubular injury and repair
AQP2 在细胞迁移和肾小管损伤与修复中的新作用
  • 批准号:
    8505607
  • 财政年份:
    2013
  • 资助金额:
    $ 25.74万
  • 项目类别:
Novel roles of integrin b1 signaling in regulating principal cell function andmaintaining collecting duct integrity
整合素b1信号在调节主要细胞功能和维持集合管完整性中的新作用
  • 批准号:
    10458603
  • 财政年份:
    2013
  • 资助金额:
    $ 25.74万
  • 项目类别:
Novel roles of integrin b1 signaling in regulating principal cell function and maintaining collecting duct integrity
整合素 b1 信号在调节主要细胞功能和维持集合管完整性中的新作用
  • 批准号:
    9791164
  • 财政年份:
    2013
  • 资助金额:
    $ 25.74万
  • 项目类别:
Novel role of AQP2 in cell migration and kidney tubular injury and repair
AQP2 在细胞迁移和肾小管损伤与修复中的新作用
  • 批准号:
    8738642
  • 财政年份:
    2013
  • 资助金额:
    $ 25.74万
  • 项目类别:
Novel role of AQP2 in cell migration and kidney tubular injury and repair
AQP2 在细胞迁移和肾小管损伤与修复中的新作用
  • 批准号:
    9067537
  • 财政年份:
    2013
  • 资助金额:
    $ 25.74万
  • 项目类别:
Characterization of AQP2 interacting proteins and novel functions of AQP2
AQP2 相互作用蛋白的表征和 AQP2 的新功能
  • 批准号:
    7996183
  • 财政年份:
    2010
  • 资助金额:
    $ 25.74万
  • 项目类别:
Using zebrafish to define a novel role for AQP2 in kidney tubulogenesis
利用斑马鱼定义 AQP2 在肾小管发生中的新作用
  • 批准号:
    7712503
  • 财政年份:
    2009
  • 资助金额:
    $ 25.74万
  • 项目类别:
Using zebrafish to define a novel role for AQP2 in kidney tubulogenesis
利用斑马鱼定义 AQP2 在肾小管发生中的新作用
  • 批准号:
    7918801
  • 财政年份:
    2009
  • 资助金额:
    $ 25.74万
  • 项目类别:
Characterization of AQP2 interacting proteins and novel functions of AQP2
AQP2 相互作用蛋白的表征和 AQP2 的新功能
  • 批准号:
    7138395
  • 财政年份:
    2006
  • 资助金额:
    $ 25.74万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 25.74万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了