Signal Transduction in the Major Quorum-Sensing Circuit of Vibrio cholerae
霍乱弧菌主要群体感应电路中的信号转导
基本信息
- 批准号:8279603
- 负责人:
- 金额:$ 16.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2014-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcidsBacteriaBehaviorBiologicalBiological ModelsCandidate Disease GeneCell Signaling ProcessCellsChemicalsCholeraCommunicable DiseasesDetectionDevelopmentDiseaseEngineeringEnvironmentEnzymesEvolutionFamilyFoundationsGene ExpressionGene ProteinsGenesGenetic ScreeningGenomeGoalsHealthHomologous GeneHumanInvestigationLigand BindingLigandsMeasuresMembraneMicrobial BiofilmsModelingMolecularMolecular EvolutionMutationOne-Step dentin bonding systemOutputPathogenesisPathway interactionsPhysiologyPlayPopulationPostdoctoral FellowProductionProtein FamilyProteinsProteobacteriaRegulationRegulonResearchRoleSensorySeriesSignal PathwaySignal TransductionSignaling MoleculeSpecific qualifier valueSpecificityStructureTimeVibrioVibrio choleraeVirulenceVirulence FactorsWorkanalogcombatcopingdesigndimergene functionimprovedmutantpathogenpathogenic bacteriaprotein-histidine kinasequorum sensingreceptorresponsesingle moleculesmall moleculetrait
项目摘要
DESCRIPTION (provided by applicant): The goal of this research is to understand the molecular mechanisms underlying quorum sensing, a cell-cell communication process that allows bacteria to coordinate population-wide gene expression and function as coordinated groups. Quorum sensing relies on the production, detection, and response to chemical signal molecules called autoinducers. Disruption of any one of these steps renders pathogenic bacteria avirulent. The research proposed here will provide an understanding of the molecular mechanisms underpinning signal production, detection and response in quorum-sensing which will enable the design of interference strategies that can be developed into new therapies to combat infectious diseases. The human pathogen Vibrio cholerae, the causative agent of the disease cholera, regulates virulence factor production and biofilm formation through quorum sensing via a new class of autoinducer, called CAI-1 ((S)-3-hydroxytridecan-4-one). CAI-1 is produced by the CqsA synthase and detected by the transmembrane histidine kinase receptor CqsS. Histidine kinase receptors are ubiquitous in bacteria and play important roles in bacterial pathogenesis, nonetheless, little is known about their molecular mechanism of signal transduction across the membrane. This is, in part, due to a profound lack of chemically defined ligands for histidine kinases. By determining the biosynthetic pathway for and structure of CAI-1, and examining the CAI-1-CqsS interaction as well interactions between CqsS and a series of related, synthetic molecules, my postdoctoral work demonstrated that the CqsA/CqsS/CAI-1 signaling pathway offers an unprecedented opportunity to study ligand-receptor interactions and transmembrane signaling by histidine kinase receptors. With this work as the foundation, going forward, my first aim is to use CAI-1/CqsS as a model system to define how this important class of receptors recognizes and propagates external signals internally into the cell. My second aim focuses on co-evolution of signal production by the CqsA synthases and signal recognition by the partner CqsS receptors. As a postdoc, I showed that signal production and signal recognition in each vibrio CqsA/CqsS pair are matched. That is, either a particular CqsA synthesizes multiple related molecules and the cognate CqsS receptor detects them all, or the CqsA enzyme produces one specific molecule and the cognate CqsS receptor is exquisitely selective for detection of that ligand. The biological significance of this co-evolution and the molecular mechanism that specifies stringency or lack thereof are unclear and I will study this phenomenon. Our understanding of the role quorum sensing plays in V. cholerae physiology is limited to virulence factor production and biofilm formation. However, the V. cholerae quorum-sensing regulon is composed of more than 100 genes in addition to those known to be involved in virulence and biofilm formation. My recent work showed that V. cholerae mutants unable to activate a quorum-sensing response are exquisitely sensitive to low pH. In my final aim, I will study the molecular mechanisms underpinning quorum-sensing dependent regulation of Acid Tolerance Response. The long term goal is to define the roles of V. cholerae quorum-sensing response in coping with the changes in the environment and in the host. It is now well established that quorum sensing is employed by many bacterial species to regulate both harmful and beneficial traits. A long standing goal of the quorum-sensing field is to develop pro-quorum- sensing and/or anti-quorum-sensing small molecules to manipulate these behaviors. This study will make progress toward this important goal.
PUBLIC HELATH RELEVANCE: Vibrio cholerae is a globally important pathogen and the burden of cholera is estimated to reach several million cases annually. V. cholerae virulence depends on a cell-cell communication process called quorum sensing that controls the timing of production and release of virulence factors and the formation of biofilms. The investigations proposed here will expand our understanding of how quorum sensing controls virulence in this important pathogen, in addition, this study will facilitate the development of synthetic strategies
for controlling V. cholerae virulence and could have enormous ramifications for improving human health.
描述(由申请人提供):本研究的目标是了解群体感应的分子机制,这是一种细胞间通讯过程,允许细菌协调群体范围内的基因表达并作为协调群体发挥作用。群体感应依赖于对称为自诱导物的化学信号分子的产生、检测和响应。这些步骤中的任何一个被破坏都会使病原菌失去毒性。本文提出的研究将提供对群体感应中信号产生、检测和响应的分子机制的理解,这将使干扰策略的设计成为可能,这些策略可以发展成为对抗传染病的新疗法。 人类病原体霍乱弧菌是霍乱疾病的病原体,其通过一类新的自诱导物CAI-1((S)-3-羟基十三烷-4-酮)通过群体感应调节毒力因子产生和生物膜形成。CAI-1由CqsA合酶产生,并由跨膜组氨酸激酶受体CqsS检测。组氨酸激酶受体广泛存在于细菌中,在细菌致病过程中起重要作用,但其跨膜信号转导的分子机制尚不清楚。这部分是由于组氨酸激酶严重缺乏化学上确定的配体。通过确定CAI-1的生物合成途径和结构,并检查CAI-1-CqsS相互作用以及CqsS与一系列相关的合成分子之间的相互作用,我的博士后工作表明,CqsA/CqsS/CAI-1信号通路提供了前所未有的机会来研究配体-受体相互作用和组氨酸激酶受体的跨膜信号传导。以这项工作为基础,我的第一个目标是使用CAI-1/CqsS作为模型系统来定义这类重要的受体如何识别并将外部信号传播到细胞内部。我的第二个目标集中在CqsA酶的信号产生和CqsS受体的信号识别的共同进化。作为博士后,我发现每个弧菌CqsA/CqsS对的信号产生和信号识别是匹配的。也就是说,要么特定的CqsA合成多个相关分子,并且同源CqsS受体检测它们全部,要么CqsA酶产生一个特定分子,并且同源CqsS受体对检测该配体具有精确的选择性。这种共同进化的生物学意义以及指定严格性或缺乏严格性的分子机制尚不清楚,我将研究这种现象。我们对群体感应在霍乱弧菌生理学中的作用的理解仅限于毒力因子的产生和生物膜的形成。然而,霍乱弧菌群体感应调节子除了已知参与毒力和生物膜形成的基因外,还由100多个基因组成。我最近的工作表明,不能激活群体感应反应的霍乱弧菌突变体对低pH值非常敏感。在我的最终目标中,我将研究支持群体感应依赖调节耐酸性反应的分子机制。长期目标是确定霍乱弧菌群体感应反应在应对环境和宿主变化中的作用。 现在已经确定,许多细菌物种利用群体感应来调节有害和有益的性状。群体感应领域的一个长期目标是开发亲群体感应和/或反群体感应小分子来操纵这些行为。这项研究将朝着这一重要目标取得进展。
公共卫生相关性:霍乱弧菌是一种全球性的重要病原体,据估计,霍乱的负担每年达到数百万例。霍乱弧菌的毒力取决于一种称为群体感应的细胞间通讯过程,该过程控制毒力因子的产生和释放以及生物膜的形成的时机。本文的研究将扩大我们对群体感应如何控制这种重要病原体毒力的理解,此外,本研究将促进合成策略的发展
用于控制霍乱弧菌的毒力,并可能对改善人类健康产生巨大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wai-Leung Ng其他文献
Wai-Leung Ng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wai-Leung Ng', 18)}}的其他基金
Signaling Mechanisms in Vibrio Cholerae Parallel Quorum Sensing Pathways
霍乱弧菌平行群体感应通路中的信号机制
- 批准号:
10368054 - 财政年份:2015
- 资助金额:
$ 16.2万 - 项目类别:
SIGNALING MECHANISMS IN VIBRIO CHOLERAE PARALLEL QUORUM SENSING PATHWAYS
霍乱弧菌平行群体感应通路中的信号机制
- 批准号:
9008788 - 财政年份:2015
- 资助金额:
$ 16.2万 - 项目类别:
Signaling Mechanisms in Vibrio Cholerae Parallel Quorum Sensing Pathways
霍乱弧菌平行群体感应通路中的信号机制
- 批准号:
10579912 - 财政年份:2015
- 资助金额:
$ 16.2万 - 项目类别:
Signal Transduction in the Major Quorum-Sensing Circuit of Vibrio cholerae
霍乱弧菌主要群体感应电路中的信号转导
- 批准号:
8536203 - 财政年份:2012
- 资助金额:
$ 16.2万 - 项目类别:
Intra- and inter species cell-cell communication in Vibrio cholerae
霍乱弧菌的种内和种间细胞通讯
- 批准号:
7329251 - 财政年份:2007
- 资助金额:
$ 16.2万 - 项目类别:
Intra- and inter species cell-cell communication in Vibrio cholerae
霍乱弧菌的种内和种间细胞通讯
- 批准号:
7489857 - 财政年份:2007
- 资助金额:
$ 16.2万 - 项目类别:
Intra- and inter species cell-cell communication in Vibrio cholerae
霍乱弧菌的种内和种间细胞通讯
- 批准号:
7683281 - 财政年份:2007
- 资助金额:
$ 16.2万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Interfacial behavior of motile bacteria at structured liquid crystal interfaces
职业:运动细菌在结构化液晶界面的界面行为
- 批准号:
2338880 - 财政年份:2024
- 资助金额:
$ 16.2万 - 项目类别:
Continuing Grant
Bacteria sensory transduction from gut to brain to modulate behavior
从肠道到大脑的细菌感觉转导来调节行为
- 批准号:
10586158 - 财政年份:2023
- 资助金额:
$ 16.2万 - 项目类别:
Regulation of infectious behavior and virulence-related genes in phytopathogenic bacteria by plant-derived signals
植物源信号对植物病原菌感染行为和毒力相关基因的调节
- 批准号:
22H02348 - 财政年份:2022
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Dynamic behavior and pathological significance of small RNA in outer membrane vesicles of periodontopathic bacteria
牙周病菌外膜囊泡小RNA的动态行为及病理意义
- 批准号:
21KK0164 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Collaborative Research: Modulation of pheromone-dependent host behavior by gut bacteria
合作研究:肠道细菌调节信息素依赖性宿主行为
- 批准号:
2042100 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
Collaborative Research: Modulation of pheromone-dependent host behavior by gut bacteria
合作研究:肠道细菌调节信息素依赖性宿主行为
- 批准号:
2042101 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
Standard Grant
The Study of ODE Quorum Sensing Models of Collective Behavior of Bacteria
细菌集体行为的ODE群体感应模型研究
- 批准号:
563492-2021 - 财政年份:2021
- 资助金额:
$ 16.2万 - 项目类别:
University Undergraduate Student Research Awards
Elucidation of source and environmental behavior of antibiotic-resistant bacteria and resistance genes by microbial source tracking
通过微生物源追踪阐明抗生素耐药细菌和耐药基因的来源和环境行为
- 批准号:
20H04357 - 财政年份:2020
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Efficacy and behavior of lactic acid bacteria using neurotransmitters as growth-promoting factors under host stress
使用神经递质作为生长促进因子的乳酸菌在宿主应激下的功效和行为
- 批准号:
20K06384 - 财政年份:2020
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of practical use of useful bacteria by understanding their behavior in the environment
通过了解有用细菌在环境中的行为来开发有用细菌的实际用途
- 批准号:
19H02865 - 财政年份:2019
- 资助金额:
$ 16.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)