Prediction Error Signaling and Reinforcement Learning in Schizophrenia
精神分裂症的预测误差信号和强化学习
基本信息
- 批准号:8263410
- 负责人:
- 金额:$ 4.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAddressAnhedoniaAntipsychotic AgentsAreaAttenuatedBasal GangliaBehaviorBehavioralBrainClinicalCodeComputer SimulationCorpus striatum structureCuesDataDevelopmentDiseaseDopamineDopamine D1 ReceptorDopamine D2 ReceptorDopamine ReceptorDoseElectrophysiology (science)FeedbackFunctional Magnetic Resonance ImagingFutureGoalsImpairmentIndividualIndividual DifferencesLearningMeasuresMediatingModelingMotivationNegative ReinforcementsNeural Network SimulationOperant ConditioningOutcomePathway interactionsPatient Self-ReportPatientsPerformancePharmaceutical PreparationsPositive ReinforcementsPsychological reinforcementQuality of lifeRelative (related person)ResistanceRewardsSchizophreniaSeveritiesSignal TransductionStimulusSymptomsSystemTask PerformancesTestingTimeTranslatingTranslationsWorkbehavioral impairmentdosageexperiencehedonicimprovedinterestmesolimbic systemneuroimagingperformance testspleasurerelating to nervous systemresponsereward processing
项目摘要
DESCRIPTION (provided by applicant): The long-term objective of this proposal is to understand the relationship between altered processing of rewards and symptoms of anhedonia (a reduced experience of pleasure) and amotivation in individuals with schizophrenia. Motivational impairments are critical features of schizophrenia that significantly impact functional capacity and are resistant to treatment. A growing body of data suggests that while in-the-moment hedonic experience is intact in schizophrenia, patients may be impaired in their ability to translate rewarding experiences into future goal-directed behavior. Essential to this ability is a capacity for reinforcement learning, which strengthens actions that result in rewarding outcomes and suppresses those that do not. This proposal aims to determine whether individuals with schizophrenia show impairments in reinforcement learning and its related neural activity, and whether individual differences in these impairments are related to symptoms of anhedonia and amotivation. Converging data from electrophysiology, neuroimaging, and computational modeling implicates the mesolimbic dopamine system in reinforcement learning, suggesting that it codes reward prediction errors that gradually integrate outcomes over several trials. This system is of particular interest in schizophrenia, given evidence of altered dopamine release in the striatum in patients with this illness. The work proposed here uses fMRI in conjunction with a computational model of reinforcement learning to examine prediction error-related neural activity during an instrumental learning paradigm in patients and controls. If prediction error signaling is disrupted in schizophrenia, patients would be expected to show reduced prediction error-related neural activity in mesolimbic areas such as the striatum, as well as behavioral impairments in reinforcement learning. If these disruptions in prediction error signaling contribute to symptoms of anhedonia and amotivation, patients who are higher in these symptoms would be expected to show larger reductions in prediction error activity and poorer task performance. Furthermore, because antipsychotic medications that block dopamine receptors in the striatum may disrupt reinforcement learning in schizophrenia, an additional aim of this proposal is to examine the relationship between individual differences in prediction error signaling/task performance and antipsychotic type and dosage. If dopamine receptor antagonism interferes with reinforcement learning, patients experiencing higher levels of dopamine receptor antagonism would be expected to show attenuated prediction error signaling and impaired task performance. An improved understanding of the relationship between dopaminergic prediction errors and reinforcement learning in schizophrenia, as well as their relationship to clinical symptoms and potential medication effects, may contribute to the development of targeted therapies to address these clinically important but currently under- treated symptoms.
描述(由申请人提供):本提案的长期目标是了解精神分裂症患者奖励处理的改变与快感缺乏症状(快乐体验减少)和动机丧失之间的关系。动机障碍是精神分裂症的关键特征,显著影响功能能力,并且对治疗有抵抗力。越来越多的数据表明,虽然精神分裂症患者的即时享乐体验是完整的,但患者将奖励体验转化为未来目标导向行为的能力可能会受损。这种能力的关键是强化学习的能力,它加强了导致奖励结果的行动,并抑制了那些没有的行动。该提案旨在确定精神分裂症患者是否在强化学习及其相关神经活动中表现出损伤,以及这些损伤的个体差异是否与快感缺失和动力丧失的症状有关。来自电生理学、神经成像和计算建模的融合数据暗示了中脑边缘多巴胺系统在强化学习中的作用,这表明它编码了奖励预测错误,这些错误逐渐整合了几次试验的结果。这一系统在精神分裂症中特别令人感兴趣,因为有证据表明患有这种疾病的患者纹状体中的多巴胺释放发生了改变。这里提出的工作使用功能磁共振成像结合强化学习的计算模型,以检查预测错误相关的神经活动在患者和对照组的工具学习范式。如果预测错误信号在精神分裂症中被破坏,预计患者将在中脑边缘区域(如纹状体)显示出减少的预测错误相关神经活动,以及强化学习中的行为障碍。如果预测错误信号的这些中断导致快感缺乏和动力不足的症状,则这些症状较高的患者预计会显示预测错误活动的较大减少和较差的任务表现。此外,由于阻断纹状体多巴胺受体的抗精神病药物可能会破坏精神分裂症的强化学习,本提案的另一个目的是检查预测错误信号/任务表现与抗精神病药物类型和剂量之间的个体差异。如果多巴胺受体拮抗作用干扰强化学习,那么经历更高水平的多巴胺受体拮抗作用的患者预计会显示出减弱的预测错误信号和受损的任务表现。对精神分裂症中多巴胺能预测错误和强化学习之间的关系以及它们与临床症状和潜在药物作用之间的关系的更好理解,可能有助于开发靶向治疗来解决这些临床重要但目前治疗不足的症状。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin Connor Dowd其他文献
Erin Connor Dowd的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin Connor Dowd', 18)}}的其他基金
Prediction Error Signaling and Reinforcement Learning in Schizophrenia
精神分裂症的预测误差信号和强化学习
- 批准号:
7998936 - 财政年份:2010
- 资助金额:
$ 4.72万 - 项目类别:
Prediction Error Signaling and Reinforcement Learning in Schizophrenia
精神分裂症的预测误差信号和强化学习
- 批准号:
8107672 - 财政年份:2010
- 资助金额:
$ 4.72万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 4.72万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 4.72万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 4.72万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 4.72万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 4.72万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 4.72万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 4.72万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 4.72万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 4.72万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 4.72万 - 项目类别:
Research Grant