Next Generation Neutron Diffraction Detector for Neuroscience

用于神经科学的下一代中子衍射探测器

基本信息

  • 批准号:
    8248926
  • 负责人:
  • 金额:
    $ 15.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-24 至 2013-09-23
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): NOVA Scientific proposes to adapt a powerful new type of neutron diffraction instrumentation for biological applications, a neutron counting and imaging detector called the MCP/Medipix detector. The detector offers much higher spatial and timing resolution, as well as higher count rate capability (10-100 MHz) and dynamic range compared with existing neutron position-sensitive detectors. It was designed to provide state-of-the-art performance to match the higher neutron fluences of next generation of neutron scattering and imaging facilities. Although demonstrated successfully during the past year in other applications, this powerful new instrument has never been applied to research in cellular and structural biology. We propose for the first time to modify and employ it as new detector tool to elucidate biologically important structures by using it in neutron diffraction (ND). One highly promising biological system which could benefit would be myelin, the electrically insulating material that ensheathes the neuron axon; its integrity is critically important for the proper functioning of the nervous system. Myelin ultrastructure studies, traditionally carried out using electron microscopy and X-ray diffraction could be substantially enhanced by using a more powerful new type of neutron diffraction (ND) detector, particularly with the increasing availability of a variety of transgenic mice that model human demyelinating disorders. Myelin would be an ideal test case for demonstrating the MCP/Medipix detector, as it allows benchmarking of previous ND measurements carried out with 3He detectors. This will demonstrate that that the improved performance of the MCP/Medipix detector represents a major advance in the power of ND for cellular and structural biology. In Phase I neutron diffraction experiments will be carried out using mouse nerves for the first time anywhere, as there are numerous transgenic mice strains that mimic human myelinopathies in both the PNS and CNS. To accomplish this, assembly and integration of a neutron sensitive 40 mm MCP with a modified Medipix readout will be carried out, preparing it for high fluence neutron diffraction experiments on a biologically-oriented neutron diffractometer. Also a versatile and advanced perfusion cell will be constructed allowing deuteration of samples for enhanced contrast variation, and to minimize neutron scattering noise. Two ND diffraction test campaigns will be carried out with the MCP/Medipix detector. Different aspects of myelin ultrastructure will be illuminated to show feasibility of ND as an essential tool for answering specific questions about myelin structure and inter-membrane dynamics. A Phase II program would expand this initial feasibility study to build larger area format MCP/Medipix detectors with the addition of advanced neutron beam collimation, to obtain even greater neutron sensitivity and diffraction pattern resolution, as well as data collection speed and efficiency. Ultimately, the MCP/Medipix detector and collimator ND enhancement would be commercialized for the benefit of the biological ND community. PUBLIC HEALTH RELEVANCE: This project develops new laboratory instrumentation to increase the power of neutron diffraction (ND), a highly sophisticated technique with the potential to probe far deeper into the actual structure of myelin, the electrically insulating material that ensheathes central core of nerve fibers. The integrity of myelin is critically important for the proper functioning of the nervous system; demyelinating disorders such as multiple sclerosis (MS), certain peripheral neuropathies, and leukodystrophies are characterized by the progressive disruption and breakdown with partial or attempted re-formation of the highly ordered myelin sheath. The ability to accurately measure these extremely subtle features of myelin, enabled by the new NOVA Scientific/Medipix detector, will increase our knowledge about disease states, and will help to provide insight into developing therapeutic strategies for stabilizing normal myelin or remyelinating nerve fibers.
描述(由申请人提供):NOVA Scientific建议将一种功能强大的新型中子衍射仪器用于生物应用,即称为MCP/Medipix探测器的中子计数和成像探测器。与现有的中子位置敏感探测器相比,该探测器具有更高的空间和时间分辨率,以及更高的计数率能力(10-100 MHz)和动态范围。它的设计目的是提供最先进的性能,以匹配下一代中子散射和成像设施的更高中子注量。虽然在过去的一年里在其他应用中得到了成功的证明,但这种强大的新仪器从未被应用于细胞和结构生物学的研究。我们首次提出修改和采用它作为新的探测器工具,以阐明生物重要的结构,通过使用它在中子衍射(ND)。 一个高度 一个有希望的生物系统,可能受益将是髓鞘,电绝缘材料的鞘神经元轴突;它的完整性是至关重要的正常运作的神经系统。传统上使用电子显微镜和X射线衍射进行的髓鞘超微结构研究可以通过使用更强大的新型中子衍射(ND)检测器来大大增强,特别是随着各种转基因小鼠模型人类脱髓鞘疾病的可用性不断增加。髓磷脂将是一个理想的测试案例,用于演示MCP/Medipix探测器,因为它允许基准以前的ND测量与3 He探测器进行。这将证明MCP/Medipix检测器性能的提高代表了ND在细胞和结构生物学方面的重大进步。 在第一阶段,中子衍射实验将首次在任何地方使用小鼠神经进行,因为有许多转基因小鼠品系在PNS和CNS中都模仿人类髓鞘病。为了实现这一目标,将进行中子敏感40 mm MCP与修改后的Medipix读数的组装和集成,为生物导向的中子衍射仪上的高通量中子衍射实验做好准备。此外,一个通用的和先进的灌注细胞将被构造允许氘化的样品增强对比度的变化,并尽量减少中子散射噪声。将使用MCP/Medipix检测器进行两次ND衍射测试活动。髓鞘超微结构的不同方面将被照亮,以显示ND作为回答髓鞘结构和膜间动力学的具体问题的重要工具的可行性。 第二阶段计划将扩大这一初步可行性研究,以建造更大面积的MCP/Medipix探测器,并增加先进的中子束准直,以获得更高的中子灵敏度和衍射图案分辨率,以及数据收集速度和效率。最终,MCP/Medipix探测器和准直器ND增强将商业化,以造福于生物ND社区。 公共卫生相关性:该项目开发了新的实验室仪器,以增加中子衍射(ND)的功率,这是一种高度复杂的技术,有可能更深入地探测髓鞘的实际结构,髓鞘是包裹神经纤维中央核心的电绝缘材料。髓鞘的完整性对于神经系统的正常功能至关重要;脱髓鞘疾病如多发性硬化症(MS)、某些周围神经病和脑白质营养不良的特征在于高度有序的髓鞘的部分或试图重新形成的进行性破坏和分解。通过新的NOVA Scientific/Medipix探测器,能够准确测量髓鞘的这些极其细微的特征,这将增加我们对疾病状态的了解,并有助于深入了解开发稳定正常髓鞘或髓鞘再生神经纤维的治疗策略。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

W B FELLER其他文献

W B FELLER的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('W B FELLER', 18)}}的其他基金

IMPROVED DETECTION OF LARGE BIOMOLECULES IN TOF-MS
改进 TOF-MS 中大生物分子的检测
  • 批准号:
    2416475
  • 财政年份:
    1994
  • 资助金额:
    $ 15.06万
  • 项目类别:
IMPROVED DETECTION OF LARGE BIOMOLECULES IN TOF-MS
改进 TOF-MS 中大生物分子的检测
  • 批准号:
    2285156
  • 财政年份:
    1994
  • 资助金额:
    $ 15.06万
  • 项目类别:
IMPROVED DETECTION OF LARGE BIOMOLECULES IN TOF-MS
改进 TOF-MS 中大生物分子的检测
  • 批准号:
    2285157
  • 财政年份:
    1994
  • 资助金额:
    $ 15.06万
  • 项目类别:

相似海外基金

An atypical microtubule generation mechanism for neurons drives dendrite and axon development and regeneration
神经元的非典型微管生成机制驱动树突和轴突的发育和再生
  • 批准号:
    23K21316
  • 财政年份:
    2024
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
  • 批准号:
    10815443
  • 财政年份:
    2023
  • 资助金额:
    $ 15.06万
  • 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
  • 批准号:
    10896844
  • 财政年份:
    2023
  • 资助金额:
    $ 15.06万
  • 项目类别:
Does phosphorylation regulation of the axon initial segment cytoskeleton improve behavioral abnormalities in ADHD-like animal models?
轴突起始段细胞骨架的磷酸化调节是否可以改善 ADHD 样动物模型的行为异常?
  • 批准号:
    23KJ1485
  • 财政年份:
    2023
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Loss-of-function variants of the axon death protein SARM1 and protection from human neurodegenerative disease
轴突死亡蛋白 SARM1 的功能丧失变体和对人类神经退行性疾病的保护
  • 批准号:
    2891744
  • 财政年份:
    2023
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Studentship
Collaborative Research: Evolution of ligand-dependent Robo receptor activation mechanisms for axon guidance
合作研究:用于轴突引导的配体依赖性 Robo 受体激活机制的进化
  • 批准号:
    2247939
  • 财政年份:
    2023
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Standard Grant
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
  • 批准号:
    10661457
  • 财政年份:
    2023
  • 资助金额:
    $ 15.06万
  • 项目类别:
Unlocking BIN1 function in oligodendrocytes and support of axon integrity
解锁少突胶质细胞中的 BIN1 功能并支持轴突完整性
  • 批准号:
    10901005
  • 财政年份:
    2023
  • 资助金额:
    $ 15.06万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 15.06万
  • 项目类别:
The role of RNA methylation in cytoskeleton regulation during axon development
RNA甲基化在轴突发育过程中细胞骨架调节中的作用
  • 批准号:
    22KF0399
  • 财政年份:
    2023
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了