Arbitrary Pulse Shaping to Advance Electron Paramagnetic Resonance Tools for Biom
任意脉冲整形促进 Biom 电子顺磁共振工具的发展
基本信息
- 批准号:8298123
- 负责人:
- 金额:$ 15.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-07-15 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAlzheimer&aposs DiseaseAmyloidBindingBiochemicalBiomedical ResearchClinicalCommunitiesComputer softwareCoupledCustomDetectionDevelopmentDiseaseDrug Delivery SystemsElectron Spin Resonance SpectroscopyElectronsEnzymesEventFiberFourier TransformFrequenciesG-Protein-Coupled ReceptorsHeatingHydration statusImageIndividualKineticsLeadLigandsMagnetic Resonance ImagingMapsMeasurementMembraneMembrane LipidsMembrane ProteinsMethodologyMolecularMolecular ConformationMutationNMR SpectroscopyNeurodegenerative DisordersNuclearNuclear Magnetic ResonanceNucleic AcidsParkinson DiseasePharmaceutical PreparationsPhasePhysiologic pulsePopulationPreclinical Drug EvaluationProtein ConformationProteinsPumpReportingResolutionSamplingShapesSignal TransductionSiteSolutionsSourceSpecific qualifier valueSpecificitySpectrum AnalysisStagingStructureSurfaceSystemTechniquesTechnologyTimeTraining ProgramsUrsidae FamilyWateralpha synucleinbasedesigndigitalenzyme activityflexibilityimprovedinhibitor/antagonistinstrumentmembrane assemblymicrowave electromagnetic radiationmonomernanoscaleneurotoxicnew technologynext generationprotein aggregationprotein foldingprotein functionprotein misfoldingprotein oligomerprotein structurereceptor structure functionresponsestructural biologytau Proteinstooltwo-dimensional
项目摘要
DESCRIPTION (provided by applicant): For the first time, an arbitrary pulse shaping module will be integrated into an Electron Paramagnetic Resonance (EPR) spectrometer that will lead to wide ranging and fundamentally important advances, including the realization of Fourier Transform EPR with high spectral resolution and time-resolved EPR spectroscopy. A Dynamic Nuclear Polarization module built into the pulsed EPR instrument will capitalize on this new pulse shaping capability to enable the next generation of quantitative and time resolved measurements of diffusive dynamics of hydration water that is lubricating the exterior and interior of proteins and membrane systems, with site-specific resolution. These are all entirely new experimental capabilities. For the broadest possible dissemination of these novel technologies to the biomedical user community, a commercial spectrometer will provide the core of the system. Despite the variety of software-customizable configurations offered by state of the art EPR instruments, they offer no ability to shape individual pulses, as is done routinely in nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI). Although shaped pulses have been implemented in NMR for over 25 years and are routinely implemented in all clinical MRI scanners, the application of arbitrary pulse shaping has, in fact, never been reported before for any EPR instrument at GHz frequencies and higher. The proposed development will capitalize on a state of the art technique that employs integrated circuit components to generate digital waveforms at ~10 GHz, whose amplitude and phase can be specified with 0.25-1 ns resolution. The expected merits of this technology are broad and significant, and include advancing the study of structure, dynamics and function of proteins, nucleic acids, assemblies or lipid membrane systems. The sensitivity for nanometer scale distance measurements of membrane proteins, including G protein-coupled receptors (GPCR), will be significantly enhanced. Critical conformation changes upon ligand-activation of GPCRs can be probed with improved temporal and spectral resolution. Conformational dynamics on the ms timescale-critical for enzyme function-can be quantified and compared between the active and inactive state, while probing the conformational substates. Equipped with these capabilities, drug effects can be effectively mapped out by directly probing the enzyme activity, through the modulation of protein conformation and hydration dynamics. The new instruments will also enable the study of early aggregation events of proteins implicated in neurodegenerative diseases, e.g. tau and amyloid-b in Alzheimer's or a-synnuclein in Parkinson's disease. One critical early event is the (mis)folding of the protein monomer that is thought to template aggregation. Soluble protein oligomers formed in the early stages of aggregation has been found to bear critical neurotoxic effects, likely more than the fibrous aggregates. The new tools will be capable of characterizing the dynamic structure of these oligomers, and quantifying the kinetics of protein folding, oligomer formation and fiber maturation with site-specificity and high time resolution. Thus, the effects of potential drugs, inhibitors or mutations can be probed on the formation or disappearance of these critical species that usually escape the detection of existing tools, and their effect on the rate limiting step of aggregation. These advances address several critical barriers in biomedical research.
描述(由申请人提供):首次将任意脉冲整形模块集成到电子顺磁共振(EPR)光谱仪中,这将带来广泛的和根本性的重要进展,包括实现具有高光谱分辨率和时间分辨EPR光谱的傅里叶变换EPR。内置于脉冲EPR仪器中的动态核极化模块将利用这种新的脉冲整形能力,以实现下一代定量和时间分辨的水化水扩散动力学测量,该水化水润滑蛋白质和膜系统的外部和内部,具有特定的分辨率。这些都是全新的实验能力。为了尽可能广泛地向生物医学用户群体传播这些新技术,商用光谱仪将提供系统的核心。尽管最先进的EPR仪器提供了各种软件可定制的配置,但它们不能像核磁共振(NMR)光谱和成像(MRI)中常规进行的那样对单个脉冲进行整形。虽然整形脉冲已经在NMR中实现了超过25年,并且常规地在所有临床MRI扫描仪中实现,但实际上,在GHz频率和更高频率的任何EPR仪器中,之前从未报道过任意脉冲整形的应用。拟议的开发将利用最先进的技术,采用集成电路元件产生数字波形在~10 GHz,其幅度和相位可以指定为0.25-1 ns的分辨率。这项技术的预期优点是广泛和重要的,包括推进蛋白质,核酸,组装或脂质膜系统的结构,动力学和功能的研究。膜蛋白,包括G蛋白偶联受体(GPCR)的纳米级距离测量的灵敏度将显着提高。配体激活GPCR后的关键构象变化可以用改进的时间和光谱分辨率来探测。ms时间尺度上的构象动力学对酶的功能至关重要可以在活性和非活性状态之间进行定量和比较,同时探测构象亚态。有了这些能力,药物作用可以通过直接探测酶活性,通过调节蛋白质构象和水合动力学来有效地绘制出来。新仪器还将使研究神经退行性疾病中涉及的蛋白质的早期聚集事件成为可能,例如阿尔茨海默氏症中的tau和淀粉样蛋白-b或帕金森氏症中的α-突触核蛋白。一个关键的早期事件是蛋白质单体的(错误)折叠,这被认为是模板聚集。已发现在聚集的早期阶段形成的可溶性蛋白质寡聚体具有关键的神经毒性作用,可能比纤维聚集体更大。新的工具将能够表征这些低聚物的动态结构,并以位点特异性和高时间分辨率量化蛋白质折叠,低聚物形成和纤维成熟的动力学。因此,可以探测潜在药物、抑制剂或突变对这些关键物质的形成或消失的影响,这些关键物质通常逃脱现有工具的检测,以及它们对聚集的限速步骤的影响。这些进展解决了生物医学研究中的几个关键障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Songi Han其他文献
Songi Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Songi Han', 18)}}的其他基金
MARC at the University of California Santa Barbara
加州大学圣塔芭芭拉分校 MARC
- 批准号:
10406266 - 财政年份:2020
- 资助金额:
$ 15.51万 - 项目类别:
MIRA: Uncover Design Rules for Interaction and Assembly of Nature’s Molecular Machines
MIRA:揭示自然分子机器相互作用和组装的设计规则
- 批准号:
10651833 - 财政年份:2020
- 资助金额:
$ 15.51万 - 项目类别:
MIRA: Uncover Design Rules for Interaction and Assembly of Nature’s Molecular Machines
MIRA:揭示自然分子机器相互作用和组装的设计规则
- 批准号:
10403510 - 财政年份:2020
- 资助金额:
$ 15.51万 - 项目类别:
MIRA: Uncover Design Rules for Interaction and Assembly of Nature's Molecular Machines
MIRA:揭示自然分子机器相互作用和组装的设计规则
- 批准号:
10205773 - 财政年份:2020
- 资助金额:
$ 15.51万 - 项目类别:
MARC at the University of California Santa Barbara
加州大学圣塔芭芭拉分校 MARC
- 批准号:
10170389 - 财政年份:2020
- 资助金额:
$ 15.51万 - 项目类别:
Multifrequency microwave powered DNP instrument for MAS NMR
用于 MAS NMR 的多频微波供电 DNP 仪器
- 批准号:
9166814 - 财政年份:2016
- 资助金额:
$ 15.51万 - 项目类别:
The Role of Lipid Membrane and Hydration on the Oligomerization and Function of PR and A2A
脂膜和水合对 PR 和 A2A 寡聚化和功能的作用
- 批准号:
9276861 - 财政年份:2015
- 资助金额:
$ 15.51万 - 项目类别: