A Cellular Chip for High-Throughput Measurements of Single, Growing Cells
用于单个生长细胞高通量测量的细胞芯片
基本信息
- 批准号:8374248
- 负责人:
- 金额:$ 29.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AntibioticsBacteriaBiologicalBuffersCell CountCell DensityCell FractionCellsComplexComputer softwareCrowdingDNA Microarray ChipDataData SetDevelopmentDevicesDiffusionEnvironmentFlagellaFluorescenceGelGene ExpressionGenerationsGenomeGrowthHealthHeterogeneityHumanHydrogelsImageImage AnalysisIndividualInterventionLaboratoriesLifeMeasurementMeasuresMechanicsMethodsMicroarray AnalysisMicrobiologyMicrofluidicsMicroscopeMicroscopyMonitorNutrientPatternPrintingPropertyProteinsRecording of previous eventsReporterResolutionRunningSepharoseSolidSpeedStarvationStressStructureTechniquesTestingTimeWorkanalogbasecellular imagingcharge coupled device cameradensitydesigngenome wide association studyimaging modalityimprovedlithographymethod developmentmovienanopatternnovelporous hydrogelpressureresearch studyresponsestatisticssubmicrontool
项目摘要
DESCRIPTION (provided by applicant): In this proposal, we will develop a platform for the high-throughput measurement of growth and gene expression in single bacterial cells. Time-lapse microscopy of growing bacteria has been an extremely successful technique, revealing the natural heterogeneity that underlies growth and gene expression in single cells. However, the exponential growth of bacteria quickly overwhelms the solid support, depleting the local nutrient environment, crowding cells, and limiting measurement duration. Here, we will circumvent the low throughput of such measurements by combining microfluidic techniques, microarray technology, and automated image analysis to create a massively parallel, high-throughput, single-cell 'chip'-a living analog of the DNA microarray. In our first aim, we will continue our construction of a single-cell chemostat-a micro-patterned pad that can be used to cultivate a high density of cells for long durations while allowing individual cells to be imaged. We use soft-lithography to create nano-patterned hydrogel pads that constrain bacteria to high-density linear tracks. Buffer flow through microfluidic lines in the gel delivers fresh nutrient bufer and washes away excess cells. Soft and porous hydrogels hold cells in place with a non-perturbative pressure and allow unrestricted diffusion to maintain a uniform nutrient environment. We will focus on creating a device that allows real-time control over the nutrient environment and precise control over the mechanical properties of the hydrogel that holds the cells. This single-cell chemostat will dramatically increase both the duration of time-lapse measurements and the number of cells that can be imaged in a field-of-view. In our second aim, we will develop methods to leverage existing microarray technology to print thousands of distinct bacterial strains onto a single patterned hydrogel. We will pursue two approaches for printing cells to patterned pads, both of which have been validated by proof-of-principle experiments. Advances in this aim will allow multiple experiments to be run in parallel on a single patterned hydrogel, providing a dramatic increase in the number of distinct bacterial strains that can be characterized simultaneously. In our final aim, we will develop the necessary image-based techniques to perform high-speed, high- throughput, time-lapse microscopy of growth on a nano-patterned pad, and we will develop the automated image analysis software needed to extract the full history of growth, division, and fluorescent gene expression within cellular lineages from these large data sets. These techniques will allow us to monitor the entire life of millions of cells in a single overnight measurement. These advances will make high-throughput, single-cell studies possible in our laboratory. We will be able to characterize the transcriptional network that regulates the assembly of complex, multi-protein machines such as the flagella; and investigate the transcriptional response to multiple antibiotic stresses-a proble that is extremely relevant to human health. Moreover, by providing a platform for high-throughput single-cell measurements, our cellular chip will prove a useful tool for answering many pressing questions in microbiology.
PUBLIC HEALTH RELEVANCE: We will develop a single-cell chemostat that allows the high-throughput measurement of growth and gene expression of single living cells growing under constant nutrient conditions. We will develop methods to print thousands of distinct strains to a single device and methods to collect and analyze massive time-lapse data sets of bacteria growing in this device. This experimental platform will allow us to study genome-wide transcriptional response to a wide range of environmental stresses, including multiple antibiotic exposure and nutrient starvation, at the single-cell level.
描述(申请人提供):在这项提案中,我们将开发一个高通量测量单个细菌细胞的生长和基因表达的平台。细菌生长的时间推移显微镜是一项极其成功的技术,揭示了单细胞生长和基因表达的自然异质性。然而,细菌的指数增长迅速淹没了固体支撑,耗尽了当地的营养环境,拥挤了细胞,限制了测量时间。在这里,我们将通过结合微流控技术、微阵列技术和自动图像分析来创建大规模并行、高通量的单细胞‘芯片’--DNA微阵列的活体模拟,从而绕过此类测量的低吞吐量。在我们的第一个目标中,我们将继续构建单细胞恒化器--一种微图案垫,可用于长期培养高密度细胞,同时允许对单个细胞进行成像。我们使用软光刻来创建纳米图案的水凝胶垫,将细菌限制在高密度的线性轨迹上。通过凝胶中的微流控管道的缓冲流提供新鲜的营养缓冲,并冲洗掉多余的细胞。柔软和多孔的水凝胶以非扰动压力将细胞固定在适当的位置,并允许不受限制的扩散,以维持统一的营养环境。我们将专注于创造一种设备,允许实时控制营养环境,并精确控制保持细胞的水凝胶的机械性能。这种单细胞恒化器将极大地增加延时测量的持续时间和可在视野中成像的细胞数量。在我们的第二个目标中,我们将开发利用现有的微阵列技术将数千种不同的细菌菌株打印到单一图案水凝胶上的方法。我们将探索两种将电池打印到图案化焊盘的方法,这两种方法都已通过原理验证实验进行验证。这一目标的进展将允许在单一图案水凝胶上并行进行多项实验,从而显著增加可同时表征的不同细菌菌株的数量。在我们的最终目标中,我们将开发必要的基于图像的技术,对纳米图案垫上的生长进行高速、高通量、延时显微镜观察,并开发从这些大型数据集中提取细胞系内生长、分裂和荧光基因表达的完整历史所需的自动化图像分析软件。这些技术将使我们能够在一次夜间测量中监测数百万个电池的整个寿命。这些进展将使我们实验室的高通量、单细胞研究成为可能。我们将能够表征调控复杂的多蛋白质机器(如鞭毛)组装的转录网络;并研究对多种抗生素压力的转录反应--这是一个与人类健康极其相关的问题。此外,通过为高通量单细胞测量提供平台,我们的蜂窝芯片将被证明是回答微生物学中许多紧迫问题的有用工具。
与公共健康相关:我们将开发一种单细胞恒化器,允许高通量测量在恒定营养条件下生长的单个活细胞的生长和基因表达。我们将开发将数千种不同的菌株打印到一台设备上的方法,以及收集和分析在该设备中生长的细菌的大量时间推移数据集的方法。这个实验平台将使我们能够在单细胞水平上研究全基因组对广泛的环境压力的转录反应,包括多重抗生素暴露和营养饥饿。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philippe Cluzel其他文献
Philippe Cluzel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philippe Cluzel', 18)}}的其他基金
Noise, memory, and adaptation in the flagellum system in E.coli.
大肠杆菌鞭毛系统的噪音、记忆和适应。
- 批准号:
10004140 - 财政年份:2019
- 资助金额:
$ 29.85万 - 项目类别:
A Cellular Chip for High-Throughput Measurements of Single, Growing Cells
用于单个生长细胞高通量测量的细胞芯片
- 批准号:
8496687 - 财政年份:2012
- 资助金额:
$ 29.85万 - 项目类别:
相似国自然基金
Segmented Filamentous Bacteria激活宿主免疫系统抑制其拮抗菌 Enterobacteriaceae维持菌群平衡及其机制研究
- 批准号:81971557
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
电缆细菌(Cable bacteria)对水体沉积物有机污染的响应与调控机制
- 批准号:51678163
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: Developing Biological drones for attacking targeted bacteria
EAGER:开发攻击目标细菌的生物无人机
- 批准号:
2222345 - 财政年份:2022
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
Chemical & Biological Interception of Cell-Cell Communication in Gram-Positive Bacteria
化学
- 批准号:
2108511 - 财政年份:2021
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
Deriving biological principles from replication initiation control in bacteria
从细菌复制起始控制中得出生物学原理
- 批准号:
2016090 - 财政年份:2020
- 资助金额:
$ 29.85万 - 项目类别:
Standard Grant
Cultivation and molecular biological analysis of copper reducing bacteria as for a copper recycling from low-grade metal ore
低品位金属矿石回收铜还原菌的培养及分子生物学分析
- 批准号:
20K05407 - 财政年份:2020
- 资助金额:
$ 29.85万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidating the biological mechanisms underlying the motility of flagellated bacteria by understanding torque generation
通过了解扭矩的产生来阐明有鞭毛细菌运动的生物学机制
- 批准号:
2741993 - 财政年份:2020
- 资助金额:
$ 29.85万 - 项目类别:
Studentship
Metabolic engineering and synthetic biological utilization of coryneform bacteria aiming to expand its versatility as a production host
棒状细菌的代谢工程和合成生物利用,旨在扩大其作为生产宿主的多功能性
- 批准号:
19K15736 - 财政年份:2019
- 资助金额:
$ 29.85万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Biological Control of Dengue Disease Using Symbiotic Wolbachia Bacteria: Environmentally Safe and Inexpensive Approach
使用共生沃尔巴克氏菌生物控制登革热:环境安全且廉价的方法
- 批准号:
19KK0107 - 财政年份:2019
- 资助金额:
$ 29.85万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Establishment of a biological method to treat 1,4-dioxane in landfill leachate by selective enrichment and activation of indigenous 1,4-dioxane-degrading bacteria
通过选择性富集和活化本土1,4-二恶烷降解菌建立处理垃圾渗滤液中1,4-二恶烷的生物方法
- 批准号:
19H04301 - 财政年份:2019
- 资助金额:
$ 29.85万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of biological impacts on host plants by gut bacteria of tephritid fruit flies
阐明实蝇肠道细菌对宿主植物的生物学影响
- 批准号:
18K19217 - 财政年份:2018
- 资助金额:
$ 29.85万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Preparation of gnotobiotic marine earthworm for pollutant decomposition and analysis of biological functions of endogenous bacteria
污染物分解用知生海洋蚯蚓的制备及内源细菌生物学功能分析
- 批准号:
17K20075 - 财政年份:2017
- 资助金额:
$ 29.85万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)














{{item.name}}会员




