An Astrocytic Basis for Humanity

人类的星形胶质细胞基础

基本信息

  • 批准号:
    8410430
  • 负责人:
  • 金额:
    $ 38.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-30 至 2017-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): We will test the hypothesis that the superior cognitive abilities of humans compared to rodents is, at least in part, the result of an evolutionary increas in the ability of human astrocytes to control synapse formation and function compared to rodent astrocytes. Astrocytes are a major cell type in the brain that constitute at least one third of rodent and human brain cells. Long thought to be passive support cells, studies from many labs over the past 15 years have shown that astrocytes powerfully control the formation, function, and plasticity of synapses in the central nervous system (CNS). Could the superior cognitive abilities of humans be due to an evolutionary advance in astrocytic control of synaptic formation and/or function? We have developed new methods to purify both rodent and human astrocytes. These new methods will enable us to directly test our hypothesis. To address this hypothesis, we will take three different approaches. First we will use next generation RNA-Seq sequencing to determine and compare the transcriptomes of mouse and human astrocytes. A prediction of our hypothesis is that human astrocytes may secrete synaptic signals that are quantitatively or qualititavely different than those secreted by rodent astrocytes. The function of the human specific genes identified will therefore be further assessed for potential synaptic functions in Approach 2. Second, we will directly compare the ability of mouse and human astrocytes to stimulate synapse formation and function. We will also determine whether novel human astrocyte genes identified in approach 1 that encode for secreted proteins can stimulate synapse formation or function. Human genes that strongly control synapse formation or function will then be expressed in mouse astrocytes in transgenic mice to determine if they have enhanced cognitive abilities. In our final third approach, we will use modern metabolomics methods to elucidate the small chemical signaling molecules secreted by mouse and human astrocytes, with a focus on identifying novel astrocyte secreted chemicals that control synaptic function. The new molecular insight these studies provide about human astrocytes will also provide the foundation for investigations of pathological changes of astrocytes in human neurological disorders and reveal how malfunction of astrocytes leads to neurodevelopmental disorders such as autism and neuropsychiatric disorders with unique manifestations in human emotion and behavior, such as autism, anxiety disorder, and depression. PUBLIC HEALTH RELEVANCE: Our goal is to test the hypothesis that the superior cognitive abilities of humans compared with rodents is due to an evolutionary advance in the abilities of human astrocytes to control synapse formation and function. The proposed experiments will explore this using 3 different approaches (1) to use RNA---seq to determine and compare the rodent and human astrocyte transcriptomes, (2) to directly compare the effects of rodent and human astrocytes on synapse formation and function, and (3) to determine and compare the rodent and human astrocyte secreted metabolome. These experiments will advance our understanding of what it means to be human and lead to better understanding of the cause and treatment of human neurological and psychiatric diseases.
DESCRIPTION (provided by applicant): We will test the hypothesis that the superior cognitive abilities of humans compared to rodents is, at least in part, the result of an evolutionary increas in the ability of human astrocytes to control synapse formation and function compared to rodent astrocytes. Astrocytes are a major cell type in the brain that constitute at least one third of rodent and human brain cells. Long thought to be passive support cells, studies from many labs over the past 15 years have shown that astrocytes powerfully control the formation, function, and plasticity of synapses in the central nervous system (CNS). Could the superior cognitive abilities of humans be due to an evolutionary advance in astrocytic control of synaptic formation and/or function? We have developed new methods to purify both rodent and human astrocytes. These new methods will enable us to directly test our hypothesis. To address this hypothesis, we will take three different approaches. First we will use next generation RNA-Seq sequencing to determine and compare the transcriptomes of mouse and human astrocytes. A prediction of our hypothesis is that human astrocytes may secrete synaptic signals that are quantitatively or qualititavely different than those secreted by rodent astrocytes. The function of the human specific genes identified will therefore be further assessed for potential synaptic functions in Approach 2. Second, we will directly compare the ability of mouse and human astrocytes to stimulate synapse formation and function. We will also determine whether novel human astrocyte genes identified in approach 1 that encode for secreted proteins can stimulate synapse formation or function. Human genes that strongly control synapse formation or function will then be expressed in mouse astrocytes in transgenic mice to determine if they have enhanced cognitive abilities. In our final third approach, we will use modern metabolomics methods to elucidate the small chemical signaling molecules secreted by mouse and human astrocytes, with a focus on identifying novel astrocyte secreted chemicals that control synaptic function. The new molecular insight these studies provide about human astrocytes will also provide the foundation for investigations of pathological changes of astrocytes in human neurological disorders and reveal how malfunction of astrocytes leads to neurodevelopmental disorders such as autism and neuropsychiatric disorders with unique manifestations in human emotion and behavior, such as autism, anxiety disorder, and depression. PUBLIC HEALTH RELEVANCE: Our goal is to test the hypothesis that the superior cognitive abilities of humans compared with rodents is due to an evolutionary advance in the abilities of human astrocytes to control synapse formation and function. The proposed experiments will explore this using 3 different approaches (1) to use RNA---seq to determine and compare the rodent and human astrocyte transcriptomes, (2) to directly compare the effects of rodent and human astrocytes on synapse formation and function, and (3) to determine and compare the rodent and human astrocyte secreted metabolome. These experiments will advance our understanding of what it means to be human and lead to better understanding of the cause and treatment of human neurological and psychiatric diseases.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

BEN A BARRES其他文献

BEN A BARRES的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('BEN A BARRES', 18)}}的其他基金

Testing a new hypothesis for CNS synaptic senescence
测试中枢神经系统突触衰老的新假设
  • 批准号:
    8794123
  • 财政年份:
    2014
  • 资助金额:
    $ 38.85万
  • 项目类别:
Testing a new hypothesis for CNS synaptic senescence
测试中枢神经系统突触衰老的新假设
  • 批准号:
    8929133
  • 财政年份:
    2014
  • 资助金额:
    $ 38.85万
  • 项目类别:
Phenotyping Astrocytes in Human Neurodevelopmental Disorders
人类神经发育障碍中星形胶质细胞的表型分析
  • 批准号:
    8441232
  • 财政年份:
    2013
  • 资助金额:
    $ 38.85万
  • 项目类别:
Phenotyping Astrocytes in Human Neurodevelopmental Disorders
人类神经发育障碍中星形胶质细胞的表型分析
  • 批准号:
    8629791
  • 财政年份:
    2013
  • 资助金额:
    $ 38.85万
  • 项目类别:
New Tools to Understand Microglial Function
了解小胶质细胞功能的新工具
  • 批准号:
    8449876
  • 财政年份:
    2012
  • 资助金额:
    $ 38.85万
  • 项目类别:
New Tools to Understand Microglial Function
了解小胶质细胞功能的新工具
  • 批准号:
    8539639
  • 财政年份:
    2012
  • 资助金额:
    $ 38.85万
  • 项目类别:
An Astrocytic Basis for Humanity
人类的星形胶质细胞基础
  • 批准号:
    8692035
  • 财政年份:
    2012
  • 资助金额:
    $ 38.85万
  • 项目类别:
An Astrocytic Basis for Humanity
人类的星形胶质细胞基础
  • 批准号:
    9068256
  • 财政年份:
    2012
  • 资助金额:
    $ 38.85万
  • 项目类别:
An Astrocytic Basis for Humanity
人类的星形胶质细胞基础
  • 批准号:
    8554927
  • 财政年份:
    2012
  • 资助金额:
    $ 38.85万
  • 项目类别:
Vision Research Training Program
视觉研究培训计划
  • 批准号:
    8448726
  • 财政年份:
    2010
  • 资助金额:
    $ 38.85万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
  • 批准号:
    2230829
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 38.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了