Optical Imaging Fused with Tomosynthesis for Improved Breast Cancer
光学成像与断层合成相结合可改善乳腺癌
基本信息
- 批准号:8444272
- 负责人:
- 金额:$ 50.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-05-01 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:Advanced DevelopmentAlgorithmsApplications GrantsBackBiopsyBreastCharacteristicsClinicalClinical ResearchClinical TrialsComputer softwareDataDevelopmentDiagnosticDiseaseElementsExhibitsFilmFundingFutureGenerationsGoalsImageImaging technologyInstitutionInvestigationMalignant NeoplasmsMammographyMassachusettsMethodsNIH Program AnnouncementsOutcomePatternPhysicsPredictive ValueRelative (related person)Research DesignResolutionResourcesStagingSystemTechniquesTechnologyTissuesUniversitiesValidationdesignexperienceimage processingimage reconstructionimaging Segmentationimaging modalityimprovedin vivoinnovationmalignant breast neoplasmmedical schoolsmortalityoptical imagingprototypereconstructiontomography
项目摘要
PROJECT SUMMARY/ABSTRACT
This application responds to Program Announcement Number PAR-07-214 (Academic-Industrial Partnerships
for Development and Validation of In Vivo Imaging Systems and Methods for Cancer Investigations) by
proposing a 3-way partnership between Dartmouth, University of Massachusetts (UMass) Medical School and
Hologic, Inc (Bedford, MA) to develop and validate a new fusion technology for breast imaging - Near Infrared
(NIR) spectral tomography (NIRST) integrated with breast tomosynthesis (BTS). The goal is to create a single
exam platform that will synergistically combine the functional parameters obtained through NIRST with the high
resolution 3D structural information available from BTS to enable diagnostic decisions that exhibit superior
ROC characteristics and substantially improved PPVs over current call-back and diagnostic practices
associated with breast cancer surveillance. The project capitalizes on the significant technical, clinical and
commercial strengths of its three partners. Specifically, Dartmouth provides more than a decade of experience
in the development of advanced concepts for application of NIRST in breast imaging including forms that have
been successfully fused with other conventional imaging modalities. Dartmouth has also participated as a
leading institution in early clinical studies of BTS with the Hologic system. UMass brings accomplishments and
expertise in the x-ray physics of breast imaging that includes the development of significant advances in
system hardware as well as image processing and reconstruction algorithms which are pivotal to the proposed
studies. Hologic, Inc, is the commercial leader in the development of the most advanced BTS technology, has
extensive experience in the design and conduct of BTS evaluative clinical trials and is poised to release
commercially its second generation system which is expected to gain FDA approval in the near future. The
specific aims of the project are: (1) to develop a fusion of NIRST and BTS that progresses to a fully integrated
platform where the optical imaging technology is permanently in place during BTS imaging; (2) to develop the
x-ray image segmentation and concomitant reconstruction algorithms for defining breast parenchymal patterns
as structural priors for NIR image formation; (3) to optimize and characterize the most promising hardware and
software outcomes from Aim 1 and Aim 2 and evaluate them in phantoms and early-stage clinical exams to
establish feasibility and refine their capabilities in the form of two identical prototypes; (4) to conduct a two-
center clinical study designed to demonstrate the validity of the proposed fusion platform and establish the
clinical potential of the approach.
项目概要/摘要
此应用程序响应计划公告编号 PAR-07-214(学术-工业合作伙伴关系)
用于癌症研究体内成像系统和方法的开发和验证)
提议达特茅斯学院、马萨诸塞大学 (UMass) 医学院和
Hologic, Inc(马萨诸塞州贝德福德)将开发并验证一种新的乳腺成像融合技术 - 近红外
(NIR) 光谱断层扫描 (NIRST) 与乳腺断层合成 (BTS) 集成。目标是创建一个单一的
考试平台将通过 NIRST 获得的功能参数与高
BTS 提供分辨率 3D 结构信息,使诊断决策表现出卓越的性能
与当前回调和诊断实践相比,ROC 特征和显着改进的 PPV
与乳腺癌监测相关。该项目利用了重要的技术、临床和
其三个合作伙伴的商业优势。具体来说,达特茅斯提供了十多年的经验
开发 NIRST 在乳腺成像中应用的先进概念,包括具有以下特点的形式:
已成功与其他传统成像方式融合。达特茅斯学院也作为
使用 Hologic 系统进行 BTS 早期临床研究的领先机构。麻省大学带来的成就和
乳腺成像 X 射线物理学方面的专业知识,包括在
系统硬件以及图像处理和重建算法对于所提出的方案至关重要
研究。 Hologic, Inc 是开发最先进 BTS 技术的商业领导者,
在 BTS 评估性临床试验的设计和实施方面拥有丰富的经验,并准备发布
其第二代系统即将投入商业化,预计将在不久的将来获得 FDA 的批准。这
该项目的具体目标是:(1) 开发 NIRST 和 BTS 的融合,从而发展为完全集成的
BTS 成像期间光学成像技术永久到位的平台; (2) 发展
用于定义乳腺实质模式的 X 射线图像分割和伴随重建算法
作为近红外图像形成的结构先验; (3) 优化和表征最有前途的硬件和
目标 1 和目标 2 的软件结果,并在模型和早期临床检查中对其进行评估,以
以两个相同原型的形式建立可行性并完善其能力; (4) 进行两次
中心临床研究旨在证明所提出的融合平台的有效性并建立
该方法的临床潜力。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Calibration and optimization of 3D digital breast tomosynthesis guided near infrared spectral tomography.
- DOI:10.1364/boe.6.004981
- 发表时间:2015-12
- 期刊:
- 影响因子:3.4
- 作者:K. Michaelsen;V. Krishnaswamy;Linxi Shi;S. Vedantham;S. Poplack;A. Karellas;B. Pogue;K. Paulsen
- 通讯作者:K. Michaelsen;V. Krishnaswamy;Linxi Shi;S. Vedantham;S. Poplack;A. Karellas;B. Pogue;K. Paulsen
Semi-automated segmentation and classification of digital breast tomosynthesis reconstructed images.
- DOI:10.1109/iembs.2011.6091528
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Vedantham S;Shi L;Karellas A;Michaelsen KE;Krishnaswamy V;Pogue BW;Paulsen KD
- 通讯作者:Paulsen KD
Characterization of materials for optimal near-infrared and x-ray imaging of the breast.
用于乳腺最佳近红外和 X 射线成像的材料表征。
- DOI:10.1364/boe.3.002078
- 发表时间:2012
- 期刊:
- 影响因子:3.4
- 作者:Michaelsen,Kelly;Krishnaswamy,Venkataramanan;Pogue,BrianW;Brooks,Ken;Defreitas,Ken;Shaw,Ian;Poplack,StevenP;Paulsen,KeithD
- 通讯作者:Paulsen,KeithD
Digital Breast Tomosynthesis guided Near Infrared Spectroscopy: Volumetric estimates of fibroglandular fraction and breast density from tomosynthesis reconstructions.
数字乳腺断层合成引导近红外光谱:通过断层合成重建对纤维腺分数和乳腺密度进行体积估计。
- DOI:10.1088/2057-1976/1/4/045202
- 发表时间:2015
- 期刊:
- 影响因子:1.4
- 作者:Vedantham,Srinivasan;Shi,Linxi;Michaelsen,KellyE;Krishnaswamy,Venkataramanan;Pogue,BrianW;Poplack,StevenP;Karellas,Andrew;Paulsen,KeithD
- 通讯作者:Paulsen,KeithD
Photon-counting digital mammography: evaluation of performance under clinically relevant conditions.
光子计数数字乳房X线摄影:临床相关条件下的性能评估。
- DOI:10.1016/j.acra.2012.05.007
- 发表时间:2012
- 期刊:
- 影响因子:4.8
- 作者:Karellas,Andrew
- 通讯作者:Karellas,Andrew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEITH D. PAULSEN其他文献
KEITH D. PAULSEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEITH D. PAULSEN', 18)}}的其他基金
Optical Scatter Imaging System for Surgical Specimen Margin Assessment during Breast Conserving Surgery
光学散射成像系统用于保乳手术中手术标本边缘评估
- 批准号:
8840807 - 财政年份:2015
- 资助金额:
$ 50.95万 - 项目类别:
Optical Scatter Imaging System for Surgical Specimen Margin Assessment during Breast Conserving Surgery
光学散射成像系统用于保乳手术中手术标本边缘评估
- 批准号:
9020962 - 财政年份:2015
- 资助金额:
$ 50.95万 - 项目类别:
Optical Scatter Imaging System for Surgical Specimen Margin Assessment during Breast Conserving Surgery
光学散射成像系统用于保乳手术中手术标本边缘评估
- 批准号:
9211221 - 财政年份:2015
- 资助金额:
$ 50.95万 - 项目类别:
CRCNS-US-German research collaboration on functional neuro-poroelastography
CRCNS-美国-德国功能性神经孔隙弹性成像研究合作
- 批准号:
8837214 - 财政年份:2014
- 资助金额:
$ 50.95万 - 项目类别:
CRCNS-US-German research collaboration on functional neuro-poroelastography
CRCNS-美国-德国功能性神经孔隙弹性成像研究合作
- 批准号:
9121345 - 财政年份:2014
- 资助金额:
$ 50.95万 - 项目类别:
Spectrally optimized, Spatially resolved Poro and Viscoelastic Brain MRE
光谱优化、空间分辨的 Poro 和粘弹性脑 MRE
- 批准号:
8738671 - 财政年份:2013
- 资助金额:
$ 50.95万 - 项目类别:
Spectrally optimized, Spatially resolved Poro and Viscoelastic Brain MRE
光谱优化、空间分辨的 Poro 和粘弹性脑 MRE
- 批准号:
8660174 - 财政年份:2013
- 资助金额:
$ 50.95万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 50.95万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 50.95万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 50.95万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 50.95万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 50.95万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 50.95万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 50.95万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 50.95万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 50.95万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 50.95万 - 项目类别:
Research Grant














{{item.name}}会员




