Mathematical modeling and computer simulation of aortic dissection
主动脉夹层的数学建模和计算机模拟
基本信息
- 批准号:8581495
- 负责人:
- 金额:$ 51.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-26 至 2018-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAffectAnatomyAnimal ModelAortaAortic DiseasesAutomobile DrivingBloodBlood PressureBlood VesselsCaliberChronicClinicalClinical ManagementClinical PathologyComputer SimulationDataDescending aortaDiseaseDissectionDistalElasticityEnsureFailureGeneticGoalsHealthHumanHuman CharacteristicsImageImplantInjuryInterventionLesionLiquid substanceLocationMagnetic Resonance ImagingMechanicsMedicalMethodologyMethodsModelingOperative Surgical ProceduresOutcomePathologyPatientsPatternPhysiciansPlant RootsPlayPropertyResearchResidual stateRiskRisk AssessmentRoleRuptureShapesSimulateSiteStentsStressStructureStudy modelsSurgical FlapsSyndromeTestingThoracic aortaTimeTissue ModelTissue SampleTissuesWorkX-Ray Computed Tomographyaortic archascending aortabaseclinical decision-makingexperiencehemodynamicshigh riskimplantationimprovedin vivoinnovationmathematical modelmortalityphysical modelpredictive modelingpressurepublic health relevancerepairedresponseshear stresssimulationtreatment planningtreatment strategyvalve replacement
项目摘要
DESCRIPTION (provided by applicant): Management of aortic diseases has progressed dramatically since the first successful, reproducible surgical intervention in 1956; however, while
our understanding of the genetic and cellular bases of these diseases has steadily grown, treatment planning still generally relies on simple risk-assessment models and clinical experience. Some pathologies have been successfully replicated in animal models, but results from such studies are not always readily extrapolated to patients. Other pathologies lack any accepted or reproducible animal model. An example is aortic dissection, in which an intimal tear in the aortic wall propagates into the media to form a false lumen within the vessel wall. Surgical
treatment for aortic dissection consists of either replacement of a portion of the aorta or endovascular stent implantation to cover the affected segment. Both approaches carry significant risks, and determining the optimal choice and timing of an intervention is challenging. While aortic dissections can be induced in animal models, such models do not replicate the clinical pathology. Consequently, modeling studies of aortic dissection must use physical or computational models. Existing computational models of aortic dissection use conventional computational fluid dynamics (CFD) approaches, in which the vessel wall and flap are treated as rigid structures. Although CFD models are able to predict wall shear stress distributions, they are unable to account for the interactions between the blood and vascular tis- sues, or for the effects of such interactions on the dynamics of the dissected aorta. This project will develop fluid-structure interaction (FSI) models of both the dissected and dissecting aorta that overcome the limitations of CFD models. These predictive models will be used to perform patient-specific simulations that ultimately will aid in clinical decision making, e.g., selecting optimal medical therapies or surgical interventions. This project will develop two types of FSI models of aortic dissection. The first type of model will use a geometrically parameterized, non-patient-specific model of the vessel and lesion. Such models will be used to study systematically how geometry and driving conditions affect the dynamics of both developing dissections and fully developed lesions. The second type of model will account for the effects of subject-specific anatomy by using realistic patient anatomical geometries derived from computed tomography (CT) and/or magnetic resonance (MR) imaging studies. To characterize the mechanical response and the damage and failure characteristics of human aortic tissue, experimental tests will be performed using tissue samples collected from both normal and diseased human aortas. Data from these tests will be used to develop healthy and disease-specific constitutive models that include innovative models of tissue damage and failure. The impact of these characterizations is not limited to aortic dissection, and this work has potential applications to a range of arterial pathologies, including aneurysmal rupture. Finally, these models will be used to study the surgical and medical management of patients who require or who have undergone partial repair of a Stanford Type A dissection.
描述(由申请人提供):自1956年首次成功、可重复的外科干预以来,主动脉疾病的治疗取得了显著进展;然而,
虽然我们对这些疾病的遗传和细胞基础的了解已经稳步增长,但治疗计划通常仍然依赖于简单的风险评估模型和临床经验。一些病理学已经在动物模型中成功复制,但这些研究的结果并不总是容易外推到患者身上。其他病理学缺乏任何可接受或可重复的动物模型。一个例子是主动脉夹层,其中主动脉壁中的内膜撕裂传播到中膜中以在血管壁内形成假腔。手术
主动脉夹层的治疗包括置换主动脉的一部分或血管内支架植入以覆盖受影响的节段。这两种方法都有很大的风险,确定干预的最佳选择和时机具有挑战性。虽然可以在动物模型中诱导主动脉夹层,但这种模型不能复制临床病理学。因此,主动脉夹层的建模研究必须使用物理或计算模型。现有的主动脉夹层的计算模型使用传统的计算流体动力学(CFD)方法,其中血管壁和皮瓣被视为刚性结构。尽管CFD模型能够预测壁面剪切应力分布,但它们无法解释血液和血管组织之间的相互作用,或此类相互作用对夹层主动脉动力学的影响。本项目将开发克服CFD模型局限性的夹层和夹层主动脉的流体-结构相互作用(FSI)模型。这些预测模型将用于执行患者特定的模拟,最终将有助于临床决策,例如,选择最佳的药物治疗或手术干预。 本计画将发展两种不同类型的主动脉夹层FSI模型。第一种类型的模型将使用血管和病变的几何参数化、非患者特异性模型。这些模型将用于系统地研究几何形状和驱动条件如何影响发展中的夹层和充分发展的病变的动力学。第二种类型的模型将通过使用从计算机断层扫描(CT)和/或磁共振(MR)成像研究导出的真实患者解剖几何结构来解释受试者特定解剖结构的影响。为了表征人体主动脉组织的机械响应以及损伤和失效特征,将使用从正常和患病人体主动脉采集的组织样本进行实验测试。来自这些测试的数据将用于开发健康和疾病特异性组成模型,其中包括组织损伤和失败的创新模型。这些特征的影响不仅限于主动脉夹层,这项工作有潜在的应用范围的动脉病变,包括动脉瘤破裂。最后,这些模型将用于研究需要或已经接受部分修复斯坦福大学A型夹层的患者的手术和医疗管理。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boyce Eugene Griffith其他文献
Boyce Eugene Griffith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boyce Eugene Griffith', 18)}}的其他基金
Multiscale Modeling of Clotting Risk in Atrial Fibrillation
心房颤动凝血风险的多尺度建模
- 批准号:
10226154 - 财政年份:2018
- 资助金额:
$ 51.65万 - 项目类别:
Multiscale Modeling of Clotting Risk in Atrial Fibrillation
心房颤动凝血风险的多尺度建模
- 批准号:
10458660 - 财政年份:2018
- 资助金额:
$ 51.65万 - 项目类别:
Mathematical modeling and computer simulation of aortic dissection
主动脉夹层的数学建模和计算机模拟
- 批准号:
9268058 - 财政年份:2013
- 资助金额:
$ 51.65万 - 项目类别:
Mathematical modeling and computer simulation of aortic dissection
主动脉夹层的数学建模和计算机模拟
- 批准号:
8726479 - 财政年份:2013
- 资助金额:
$ 51.65万 - 项目类别:
Mathematical modeling and computer simulation of aortic dissection
主动脉夹层的数学建模和计算机模拟
- 批准号:
9031871 - 财政年份:2013
- 资助金额:
$ 51.65万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 51.65万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 51.65万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 51.65万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 51.65万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 51.65万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 51.65万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 51.65万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 51.65万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 51.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 51.65万 - 项目类别:
Operating Grants